A unique subset of glycolytic tumour-propagating cells
drives squamous cell carcinoma
  • 1.

    Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).

    CAS  PubMed  Google Scholar 

  • 2.

    Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008).

    CAS  PubMed  Google Scholar 

  • 4.

    Lapouge, G. E. L. et al. Skin squamous cell carcinoma-propagating cells increase with tumour progression and invasiveness. EMBO J. 31, 4563–4575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 10, 246–250 (2014).

    Google Scholar 

  • 6.

    Siegle, J. M. et al. SOX2 is a cancer-specific regulator of tumour-initiating potential in cutaneous squamous cell carcinoma. Nat. Commun. 5, 4511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  • 8.

    Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  • 10.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  • 11.

    Kugel, S. & Mostoslavsky, R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 39, 72–81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Sebastian, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Kugel, S. et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell 165, 1401–1415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Abel, E. L., Angel, J. M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4, 1350–1362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Beck, B. et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    CAS  PubMed  Google Scholar 

  • 17.

    Schober, M. & Fuchs, E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase signaling. Proc. Natl Acad. Sci. USA 108, 10544–10549 (2011).

    CAS  PubMed  Google Scholar 

  • 18.

    Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Brown, J. et al. TGF-β-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 21, 650–664 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Randall, E. C. et al. Localized metabolomic gradients in patient-derived xenograft models of glioblastoma. Cancer Res. 80, 1258–1267 (2020).

    CAS  PubMed  Google Scholar 

  • 21.

    Swales, J. G. et al. Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging. Anal. Chem. 90, 6051–6058 (2018).

    CAS  PubMed  Google Scholar 

  • 22.

    Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS  PubMed  Google Scholar 

  • 24.

    Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).

    CAS  Google Scholar 

  • 25.

    Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).

    CAS  PubMed  Google Scholar 

  • 26.

    Mao, P. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl Acad. Sci. USA 110, 8644–8649 (2013).

    CAS  PubMed  Google Scholar 

  • 27.

    Feng, W. et al. Targeting unique metabolic properties of breast tumor-initiating cells. Stem Cells 32, 1734–1745 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    PubMed  Google Scholar 

  • 29.

    Almendro, V., Marusyk, A. & Polyak, K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev. Pathol. 8, 277–302 (2013).

    CAS  PubMed  Google Scholar 

  • 30.

    Rhodes, D. R. et al. Oncomine 3.0: genes, pathways and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Lawrence, M. S. et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    CAS  Google Scholar 

  • 33.

    Fitamant, J. et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10, 1692–1707 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Google Scholar 

  • 35.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Google Scholar 

  • 36.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  • 37.

    Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Google Scholar 

  • 38.

    Donner, A. J., Szostek, S., Hoover, J. M. & Espinosa, J. M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Heinrich, P. et al. Correcting for natural isotope abundance and tracer impurity in MS-, MS–MS- and high-resolution-multiple-tracer data from stable-isotope labeling experiments with IsoCorrectoR. Sci. Rep. 8, 17910 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary metabolite unit-based method of isotopically nonstationary flux analysis. Biotechnol. Bioeng. 99, 686–699 (2008).

    CAS  PubMed  Google Scholar 

  • 42.

    Abdelmoula, W. M. et al. Automatic generic registration of mass spectrometry imaging data to histology using non-linear stochastic embedding. Anal. Chem. 86, 9204–9211 (2014).

    CAS  PubMed  Google Scholar 

  • 43.

    Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    PubMed  Google Scholar 

  • 44.

    Viola, P. & Wells, W. M. III Alignment by maximization of mutual information. Int. J. Comput. Vis. 24, 137–154 (1997).

    Google Scholar 

  • 45.

    Klein, S., Staring, M., Andersson, P. & Pluim, J. P. W. Preconditioned stochastic gradient descent optimisation for monomodal image registration. Med. Image Comput. Comput. Assist. Inter. 14, 549–556 (2011).

    Google Scholar 

  • 46.

    Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

  • 47.

    Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176, 404 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Read original article here.