Activation of creER recombinase in the mouse calvaria
induces local recombination without effects on distant skeletal
segments
  • 1.

    Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85(14), 5166–5170 (1988).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Metzger, D. et al. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92(15), 6991–6995 (1995).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Kwan, K. M. Conditional alleles in mice: Practical considerations for tissue-specific knockouts. Genesis 32(2), 49–62 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Kühn, R. & Wurst, W. Gene knockout protocols. 2nd ed. In Methods in molecular biology, xvi, 4 p. of plates (Humana Press, 2009).

  • 5.

    Zhong, Z. A. et al. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone 81, 614–619 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Elrashidy, R. A. et al. Smooth muscle-specific deletion of MnSOD exacerbates diabetes-induced bladder dysfunction in mice. Am. J. Physiol. Renal Physiol. 317(4), F906–F912 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Liang, C. C. et al. Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs. J. Biomed. Sci. 16, 2 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Bu, F. et al. Activation of neuronal Ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and axonal plasticity in mice. J. Neurochem. https://doi.org/10.1111/jnc.15195 (2020).

    Article  PubMed  Google Scholar 

  • 9.

    Benedykcinska, A. et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis. Model Mech. 9(2), 211–220 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Feil, S., Valtcheva, N. & Feil, R. Inducible Cre mice. Methods Mol. Biol. 530, 343–363 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Whitfield, J. et al. The estrogen receptor fusion system in mouse models: A reversible switch. Cold Spring Harb. Protoc. 2015(3), 227–234 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Elefteriou, F. & Yang, X. Genetic mouse models for bone studies–strengths and limitations. Bone 49(6), 1242–1254 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Lin, C. et al. Alveolar type II cells possess the capability of initiating lung tumor development. PLoS ONE 7(12), e53817 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Metzger, D. & Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 24(1), 71–80 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Seime, T. et al. Inducible cell labeling and lineage tracking during fracture repair. Dev. Growth Differ. 57(1), 10–23 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Samsonraj, R. M. et al. A versatile protocol for studying calvarial bone defect healing in a mouse model. Tissue Eng. Part C Methods 23(11), 686–693 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Wilk, K. et al. Postnatal calvarial skeletal stem cells expressing PRX1 Reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Rep. 8(4), 933–946 (2017).

    MathSciNet  CAS  Article  Google Scholar 

  • 18.

    Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225), 92–96 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Karsenty, G. & Mera, P. Molecular bases of the crosstalk between bone and muscle. Bone 115, 43–49 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    D’Amelio, P. & Sassi, F. Gut microbiota, immune system, and bone. Calcif. Tissue Int. 102(4), 415–425 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Karsenty, G. Update on the biology of osteocalcin. Endocr. Pract. 23(10), 1270–1274 (2017).

    PubMed  Article  Google Scholar 

  • 22.

    Grueneberg, D. A. et al. Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257(5073), 1089–1095 (1992).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Kawanami, A. et al. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem. Biophys. Res. Commun. 386(3), 477–482 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Bassir, S. H. et al. Prx1 expressing cells are required for periodontal regeneration of the mouse incisor. Front. Physiol. 10, 591 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Martin, J. F. & Olson, E. N. Identification of a prx1 limb enhancer. Genesis 26(4), 225–229 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17(10), 1235–1241 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Lindhorst, A., Bechmann, I. & Gericke, M. Unspecific DNA recombination in AdipoqCre-ER(T2)—mediated knockout approaches in transgenic mice is sex-, age- and genotype-dependent. Adipocyte 9(1), 1–6 (2020).

    PubMed  Article  Google Scholar 

  • 28.

    Christodoulou, C. et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578(7794), 278–283 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Yeh, S. A. et al. In Vivo 3D histomorphometry quantifies bone apposition and skeletal progenitor cell differentiation. Sci. Rep. 8(1), 5580 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Miao, H. & Xiao, C. Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm. Comput. Math. Methods Med. 2018, 7235795 (2018).

    PubMed  PubMed Central  MATH  Article  Google Scholar 

  • 31.

    Onaciu, A. et al. Spontaneous and induced animal models for cancer research. Diagnostics 10(9), 660 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 32.

    Maurel, D. B. et al. Characterization of a novel murine Sost ER(T2) Cre model targeting osteocytes. Bone Res. 7, 6 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Jahn, H. M. et al. Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Sci. Rep. 8(1), 5913 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Donocoff, R. S. et al. Optimization of tamoxifen-induced Cre activity and its effect on immune cell populations. Sci. Rep. 10(1), 15244 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244(2), 305–318 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Jones, T. & Jones, P. L. A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy. PLoS ONE 13(2), e0192657 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Avci, P. et al. Animal models of skin disease for drug discovery. Expert Opin. Drug Discov. 8(3), 331–355 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Bosenberg, M. et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44(5), 262–267 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Vasioukhin, V. et al. The magical touch: Genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96(15), 8551–8556 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Zadelaar, S. M. et al. Local Cre-mediated gene recombination in vascular smooth muscle cells in mice. Transgenic Res. 15(1), 31–36 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Pimeisl, I. M. et al. Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis 51(10), 725–733 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Reid, J. M. et al. Pharmacokinetics of endoxifen and tamoxifen in female mice: Implications for comparative in vivo activity studies. Cancer Chemother. Pharmacol. 74(6), 1271–1278 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Higashi, A. Y. et al. Direct hematological toxicity and illegitimate chromosomal recombination caused by the systemic activation of CreERT2. J. Immunol. 182(9), 5633–5640 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Takebayashi, H. et al. Tamoxifen modulates apoptosis in multiple modes of action in CreER mice. Genesis 46(12), 775–781 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Brash, J. T. et al. Tamoxifen-activated CreERT impairs retinal angiogenesis independently of gene deletion. Circ Res. 127(6), 849–850 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Julien, A. et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair. Stem Cell Rep. 15(4), 955–967 (2020).

    CAS  Article  Google Scholar 

  • 47.

    Esposito, A. et al. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone 139, 115521 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Youngstrom, D. W. et al. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone 91, 64–74 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Moore, E. R. et al. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res. Ther. 9(1), 190 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Moore, E. R. et al. Correction to: Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res. Ther. 9(1), 229 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Yee, C. S. et al. Conditional deletion of Sost in MSC-derived lineages identifies specific cell-type contributions to bone mass and B-cell development. J. Bone Miner. Res. 33(10), 1748–1759 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Xiong, J., Almeida, M. & O’Brien, C. A. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation. Bone 112, 1–9 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Duchamp de Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 9(1), 773 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Cabahug-Zuckerman, P. et al. Site-specific load-induced expansion of Sca-1(+)Prrx1(+) and Sca-1(-)Prrx1(+) cells in adult mouse long bone is attenuated with age. JBMR Plus 3(9), e10199 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Deng, Q. et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/beta-Catenin. Elife 8, e50208 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Green, A. C. et al. Retinoic acid receptor gamma activity in mesenchymal stem cells regulates endochondral bone, angiogenesis, and B lymphopoiesis. J. Bone Miner. Res. 33(12), 2202–2213 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Read original article here.