Chaperone-mediated autophagy sustains haematopoietic
stem-cell function
  • 1.

    Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2950 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Xie, S. Z. et al. Sphingolipid modulation activates proteostasis programs to govern human hematopoietic stem cell self-renewal. Cell Stem Cell 25, 639–653.e7 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kirchner, P. et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 17, e3000301 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Thompson, L. M. et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol. 187, 1083–1099 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719–730 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Valdor, R. et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat. Immunol. 15, 1046–1054 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Park, C., Suh, Y. & Cuervo, A. M. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat. Commun. 6, 6823 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Schneider, J. L., Suh, Y. & Cuervo, A. M. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20, 417–432 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Gao, L. et al. Oxidation of survival factor MEF2D in neuronal death and Parkinson’s disease. Antioxid. Redox Signal. 20, 2936–2948 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Cuervo, A. M. & Dice, J. F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505–31513 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Sooparb, S., Price, S. R., Shaoguang, J. & Franch, H. A. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65, 2135–2144 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Dong, S. et al. Monitoring spatiotemporal changes in chaperone-mediated autophagy in vivo. Nat. Commun. 11, 645 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Hennrich, M. L. et al. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nat. Commun. 9, 4004 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Randall, T. D. & Weissman, I. L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Vagner, M. & Santigosa, E. Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. Aquaculture 315, 131–143 (2011).

    CAS  Article  Google Scholar 

  • 35.

    Fernanda Cury-Boaventura, M., Cristine Kanunfre, C., Gorjão, R., Martins de Lima, T. & Curi, R. Mechanisms involved in Jurkat cell death induced by oleic and linoleic acids. Clin. Nutr. 25, 1004–1014 (2006).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 36.

    de Kok, T. M. et al. Analysis of oxidative DNA damage after human dietary supplementation with linoleic acid. Food Chem. Toxicol. 41, 351–358 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Anguiano, J. et al. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 9, 374–382 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5805–5810 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    D’Alessandro, A. et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica https://doi.org/10.3324/haematol.2020.246603 (2020).

  • 41.

    Kao, Y. R. et al. Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci. Transl. Med. 10, eaas9563 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 42.

    Wilkinson, A. C., Ishida, R., Nakauchi, H. & Yamazaki, S. Long-term ex vivo expansion of mouse hematopoietic stem cells. Nat. Protocols 15, 628–648 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Dzieciatkowska, M., Hill, R. & Hansen, K. C. GeLC-MS/MS analysis of complex protein mixtures. Methods Mol. Biol. 1156, 53–66 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Das, C., Lucia, M. S., Hansen, K. C. & Tyler, J. K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113–117 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Reisz, J. A., Zheng, C., D’Alessandro, A. & Nemkov, T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol. Biol. 1978, 121–135 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Nemkov, T., Reisz, J. A., Gehrke, S., Hansen, K. C. & D’Alessandro, A. High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods. Methods Mol. Biol. 1978, 13–26 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Read original article here.