Concise review: current trends on applications of stem cells
in diabetic nephropathy
  • 1.

    Cho, N. H. et al. IDF Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Res. Clin. Pract. 138, 271–281 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Maisonneuve, P. et al. Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am. J. Kidney Dis. 35, 157–165 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    J. Am. Soc. Nephrol. 16, 1711–1722 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Cardiovasc. Therap. 30, 49–59 (2012).

    CAS  Article  Google Scholar 

  • 5.

    Hostetter, T. Prevention of end-stage renal disease due to type 2 diabetes. N. Engl. J. Med. 345, 910–912 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Vaish, M. Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Mol. Cancer 6, 26 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Arch. Immunol. Therap. Exp. 59, 369–378 (2011).

    Article  Google Scholar 

  • 8.

    J. Orthop. Surg. Res. 13, 266 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Dong, X. et al. Beneficial effects of urine-derived stem cells on fibrosis and apoptosis of myocardial, glomerular and bladder cells. Mol. Cell. Endocrinol. 427, 21–32 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Transplant. Proc. 44, 1123–1126 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Imberti, B. et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J. Am. Soc. Nephrol. 18, 2921–2928 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Togel, F. et al. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev. 18, 475–485 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Eliopoulos, N. et al. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am. J. Physiol. Ren. Physiol. 299, F1288–F1298 (2010).

    CAS  Article  Google Scholar 

  • 14.

    Li, Y. et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int. J. Mol. Med. 41, 2629–2639 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Semedo, P. et al. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27, 3063–3073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Res. Clin. Pract. 98, 465–473 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Stem Cells 28, 1446–1455 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Cell Biol. Int. 38, 497–501 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Lee, R. H. et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl Acad. Sci. USA 103, 17438–17443 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Narayanan, K. et al. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int. 83, 593–603 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Yamamoto, M. et al. Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am. J. Physiol. Ren. Physiol. 290, F52–60 (2006).

    CAS  Article  Google Scholar 

  • 22.

    Methods Mol. Biol. 826, 179–188 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Chang, J. W. et al. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant. 20, 245–257 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Ezquer, F. E. et al. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood Marrow Transplant. 14, 631–640 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Flaquer, M. et al. Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia 55, 2059–2068 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Int. J. Biol. Sci. 6, 499–512 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Exp. Biol. Med. 236, 1461–1467 (2011).

    CAS  Article  Google Scholar 

  • 28.

    J. Cell. Physiol. 223, 397–407 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Togel, F. et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Ren. Physiol. 292, F1626–F1635 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Fu, Y. et al. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng. Part B Rev. 23, 515–528 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Lv, S. et al. Mesenchymal stem cells ameliorate diabetic glomerular fibrosis in vivo and in vitro by inhibiting TGF-beta signalling via secretion of bone morphogenetic protein 7. Diab Vasc. Dis. Res. 11, 251–261 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Yi, Z. et al. Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. BioMed. Res. Int. 2013, 526367 (2013).

    Google Scholar 

  • 33.

    Methods Mol. Biol. 1024, 19–40 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  Google Scholar 

  • 35.

    Pancreat. Disord. Ther. 6, e148 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 126, 1208 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Am. J. Med. Sci. 356, 481–486 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Jiang, Z. Z. et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res. Ther. 7, 24 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Nagaishi, K. et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep. 6, 34842 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Fujita, H. et al. Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J. Am. Soc. Nephrolog. 20, 1303–1313 (2009).

    CAS  Article  Google Scholar 

  • 41.

    Daley, G. Q. From embryos to embryoid bodies: generating blood from embryonic stem cells. Ann. N. Y Acad. Sci. 996, 122–131 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Methods Enzymol. 365, 287 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Cell 110, 385–397 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Nature 292, 154–156 (1981).

    Article  Google Scholar 

  • 45.

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Kobayashi, T. et al. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem. Biophys. Res. Commun. 336, 585–595 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    J. Am. Soc. Nephrol. 16, 3527–3534 (2005).

    Article  CAS  Google Scholar 

  • 48.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Proc. Natl Acad. Sci. USA 97, 11307–11312 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Br. Med. Bull. 116, 19–27 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Schulz, T. C. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl. Med. 4, 927–931 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    J. Nephrol. 23, 143–146 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Osafune, K. iPS cell technology-based research for the treatment of diabetic nephropathy. Semin. Nephrol. 32, 479–485 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Drukker, M. et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24, 221–229 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Endocr. Rev. 32, 725 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Cell 126, 663–676 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Song, B. et al. The directed differentiation of human iPS cells into kidney podocytes. PloS ONE 7, e46453 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Xia, Y. et al. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat. Protoc. 9, 2693–2704 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536, 238 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    PloS ONE 9, e94888 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Ciampi, O. et al. Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Res. 17, 130–139 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Rogers, I. Induced pluripotent stem cells from human kidney. J. Am. Soc. Nephrol. 22, 1179–1180 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Song, B. et al. Generation of induced pluripotent stem cells from human kidney mesangial cells. J. Am. Soc. Nephrol. 22, 1213–1220 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Tajiri, S. et al. Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regeneration. Sci. Rep. 8, 14919 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 68.

    Zhou, T. et al. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Nat. Protoc. 13, 1662–1685 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence † ‡ §. Stem Cells 28, 704–712 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Hu, B. Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Wong, R. S. Mesenchymal stem cells: angels or demons? J. Biomed. Biotechnol. 2011, 459510 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    MF, P. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  Google Scholar 

  • 74.

    Charbord, P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Ther. 21, 1045–1056 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Semin. Cell Dev. Biol. 40, 82–88 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Stem Cells Int. 2018, 9837035 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Stem Cells 29, 5–10 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Ezquer, F. et al. Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol. Blood Marrow Transplant. 15, 1354–1365 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Arch. Med. Res. 47, 71–77 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Pan, X. H. et al. Bone-marrow mesenchymal stem cell transplantation to treat diabetic nephropathy in tree shrews. Cell Biochem. Funct. 32, 453–463 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Sun, J. et al. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J. Cell. Mol. Med. 22, 4840–4855 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Zhou, H. et al. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin. Med. J. 122, 2573–2579 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Lv, S. S. et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int. Immunopharmacol. 17, 275–282 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Lv, S. et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress. Res Clin. Pract. 104, 143–154 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Int. J. Clin. Pract. 59, 1309–1316 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Biol. Blood Marrow Transplant. 19, 538–546 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 87.

    Nagaishi, K. et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci. Rep. 7, 8484 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 88.

    Noh, H. et al. Uremic toxin p-cresol induces Akt-pathway-selective insulin resistance in bone marrow-derived mesenchymal stem cells. Stem Cells 32, 2443–2453 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Wu, J. et al. Age-related insulin-like growth factor binding protein-4 overexpression inhibits osteogenic differentiation of rat mesenchymal stem cells. Cell. Physiol. Biochem. 42, 640 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    J. Transl. Med. 9, 10 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Stem Cells 25, 818–827 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 92.

    Ni, W. et al. Adipose-Derived mesenchymal stem cells transplantation alleviates renal injury in streptozotocin-induced diabetic nephropathy. J. Histochem. Cytochem. 63, 842–853 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    de Girolamo, L. et al. Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr. Pharm. Des. 19, 2459–2473 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Li, D. et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res. Ther. 4, 103–103 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 95.

    Curr. Stem Cell Res. Ther. 5, 95–102 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Zhang, L. et al. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cells Dev. 22, 3074–3086 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Fang, Y. et al. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int. J. Mol. Med. 30, 85–92 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    J. Transl. Med. 5, 8 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 99.

    Hematol. Am. Soc. Hematol. https://doi.org/10.1182/asheducation-2005.1.377 (2005).

  • 100.

    Pharmacol. Rep. 64, 1223–1233 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 101.

    Biochem. Biophys. Res. Commun. 321, 168–171 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31, 1840–1856 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Ouyang, B. et al. Human urine-derived stem cells alone or genetically-modified with FGF2 Improve type 2 diabetic erectile dysfunction in a rat model. PloS ONE 9, e92825 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 105.

    Bharadwaj, S. et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng. Part A 17, 2123–2132 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Science 275, 964 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Fadini, G. P. et al. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197, 496–503 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Abe-Yoshio, Y. et al. Involvement of bone marrow-derived endothelial progenitor cells in glomerular capillary repair in habu snake venom-induced glomerulonephritis. Virchows Arch. 453, 97–106 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 110.

    Fadini, G. P. et al. Endothelial progenitor cells and the diabetic paradox. Care 29, 714–716 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Makino, H. et al. Decreased circulating CD34 + cells are associated with progression of diabetic nephropathy. Diabet. Med. 26, 171–173 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Albiero, M. et al. Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia 54, 945–953 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Fadini, G. P. et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol. 45, 1449–1457 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 114.

    Bhatwadekar, A. D. et al. Transient inhibition of transforming growth factor-beta1 in human diabetic CD34 + cells enhances vascular reparative functions. 59, 2010–2019 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Leicht, S. F. et al. Adiponectin pretreatment counteracts the detrimental effect of a diabetic environment on endothelial progenitors. 60, 652–661 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Mohler, E. R. III et al. reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol. Cytometry 75, 75–82 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 117.

    Pala, C. et al. The effect of diabetes mellitus and end-stage renal disease on the number of CD34 + cells in the blood. Ann. Hematol. 92, 1189–1194 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Exp. Res. 2012, 872504 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 119.

    Bahlmann, F. H. et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int. 64, 1648–1652 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Mohler, E. R. III et al. Effect of darbepoetin alfa on endothelial progenitor cells and vascular reactivity in chronic kidney disease. Vasc. Med. 16, 183–189 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Marchac, A. et al. Lp3: endogenous stem cell therapy improves diabetic wound healing. Plast. Reconstruct. Surg. 126, 714–715 (2010).

    Article  Google Scholar 

  • 122.

    Uchimura, H. et al. Intrarenal injection of bone marrow-derived angiogenic cells reduces endothelial injury and mesangial cell activation in experimental glomerulonephritis. J. Am. Soc. Nephrol. 16, 997–1004 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 123.

    Stem Cells Int. 2016, 1–22 (2016).

  • Read original article here.