Defining the lineage of thermogenic perivascular adipose
tissue
  • 1.

    Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

  • 2.

    Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  • 3.

    O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  • 6.

    Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell https://doi.org/10.1016/j.cell.2015.09.035 (2015).

  • 8.

    Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    62, 1783–1790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    PubMed  Google Scholar 

  • 12.

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  • 13.

    Proc. R. Soc. Med. 57, 1172–1173 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    CAS  PubMed  Google Scholar 

  • 17.

    Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    CAS  PubMed  Google Scholar 

  • 18.

    Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Eur. J. Appl. Physiol. Occup. Physiol. 46, 339–345 (1981).

    CAS  PubMed  Google Scholar 

  • 20.

    Cheung, L. et al. Human mediastinal adipose tissue displays certain characteristics of brown fat. Nutr. 3, e66 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. https://doi.org/10.1016/j.cmet.2013.01.015 (2013).

  • 22.

    Angueira, A. R. et al. Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes. Cell Rep. 30, 2869–2878 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Stine, R. R. et al. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol. Metab. 5, 57–65 (2016).

    CAS  PubMed  Google Scholar 

  • 24.

    Shapira, S. N. et al. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes Dev. 31, 660–673 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Dowal, L. et al. Intrinsic properties of brown and white adipocytes have differential effects on macrophage inflammatory responses. Mediators Inflamm. 2017, 9067049 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Tian, X. Y. et al. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 23, 165–178 (2016).

    CAS  PubMed  Google Scholar 

  • 28.

    Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    CAS  PubMed  Google Scholar 

  • 29.

    Boucher, J. M. et al. Pathological conversion of mouse perivascular adipose tissue by notch activation. Arterioscler. Thromb. Vasc. Biol. 40, 2227–2243 (2020).

    CAS  PubMed  Google Scholar 

  • 30.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Circ. Res. 75, 803–812 (1994).

    CAS  PubMed  Google Scholar 

  • 32.

    Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

  • 33.

    Domenga, V. et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 18, 2730–2735 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    CAS  PubMed  Google Scholar 

  • 36.

    Proc. Natl Acad. Sci. USA 82, 8530–8534 (1985).

    CAS  PubMed  Google Scholar 

  • 37.

    Oguri, Y. et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182, 563–577 (2020).

    CAS  PubMed  Google Scholar 

  • 38.

    Cell Metab. 14, 116–122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Dietrich, A. et al. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol. Cell. Biol. 25, 6980–6989 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    CAS  PubMed  Google Scholar 

  • 41.

    Chang, L. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126, 1067–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Ye, M. et al. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cell. Mol. Life Sci. 76, 777–789 (2019).

    CAS  PubMed  Google Scholar 

  • 43.

    Longo, K. A. et al. Wnt10b inhibits development of white and brown adipose tissues. J. Biol. Chem. 279, 35503–35509 (2004).

    CAS  PubMed  Google Scholar 

  • 44.

    J. Biol. Chem. 280, 24004–24010 (2005).

    CAS  PubMed  Google Scholar 

  • 45.

    Trends Endocrinol. Metab. 13, 5–11 (2002).

    CAS  PubMed  Google Scholar 

  • 46.

    Proc. Natl Acad. Sci. USA 100, 44–49 (2003).

    CAS  PubMed  Google Scholar 

  • 47.

    Annu. Rev. Biochem. 81, 715–736 (2012).

    CAS  PubMed  Google Scholar 

  • 48.

    Passman, J. N. et al. A Sonic Hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl Acad. Sci. USA 105, 9349–9354 (2008).

    CAS  PubMed  Google Scholar 

  • 49.

    Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Tang, J. et al. Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration. Cell Stem Cell 26, 81–96 (2020).

    CAS  PubMed  Google Scholar 

  • 51.

    Cell Rep. 9, 1007–1022 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    FASEB J. 29, 286–299 (2015).

    CAS  PubMed  Google Scholar 

  • 53.

    Shao, M. et al. Cellular origins of beige fat cells revisited. 68, 1874–1885 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Nat. Med. 19, 1338–1344 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    OMICS 16, 284–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613–D621 (2021).

    CAS  PubMed  Google Scholar 

  • 57.

    Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Kuleshov, M. V. et al. Enrichr: a comprehensive gene-set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol. Cell 68, 1006–1015 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Read original article here.