Exosome-eluting stents for vascular healing after ischaemic
injury
  • 1.

    Tayal, R. et al. Totally percutaneous insertion and removal of impella device using axillary artery in the setting of advanced peripheral artery disease. J. Invasive Cardiol. 28, 374–380 (2016).

    PubMed  Google Scholar 

  • 2.

    Vasc. Med. 14, 381–392 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Katsanos, K. et al. Wound healing outcomes and health-related quality-of-life changes in the achilles trial: 1-year results from a prospective randomized controlled trial of infrapopliteal balloon angioplasty versus sirolimus-eluting stenting in patients with ischemic peripheral arterial disease. JACC Cardiovasc. Interv. 9, 259–267 (2016).

    PubMed  Article  Google Scholar 

  • 4.

    J. Am. Coll. Cardiol. 63, 2659–2673 (2014).

    PubMed  Article  Google Scholar 

  • 5.

    Brasen, J. H. et al. Angiogenesis, vascular endothelial growth factor and platelet-derived growth factor-BB expression, iron deposition, and oxidation-specific epitopes in stented human coronary arteries. Arterioscler. Thromb. Vasc. Biol. 21, 1720–1726 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Acta Biomater. 18, 213–225 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Worthley, S. G. et al. First-in-human evaluation of a novel polymer-free drug-filled stent: angiographic, IVUS, OCT, and clinical outcomes from the RevElution study. JACC Cardiovasc. Interv. 10, 147–156 (2017).

    PubMed  Article  Google Scholar 

  • 8.

    Nakazawa, G. et al. Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization. JACC Cardiovasc. Interv. 3, 68–75 (2010).

    PubMed  Article  Google Scholar 

  • 9.

    Ann. Med. 49, 299–309 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Mol. Ther. 23, 812–823 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Methods Mol. Biol. 2150, 213–225 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Vandergriff, A. et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 8, 1869–1878 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Stem Cell Res. Ther. 8, 273 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Bone Marrow Transplant. 54, 789–792 (2019).

    PubMed  Article  Google Scholar 

  • 15.

    Front. Cell Dev. Biol. 8, 665 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Nassar, W. et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater. Res. 20, 21 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Mol. Ther. Nucleic Acids 7, 278–287 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Stem Cell Res. Ther. 10, 158 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Tsimikas, S. et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109, 3164–3170 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Laurindo, F. R. et al. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83, 1705–1715 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Annu. Rev. Immunol. 27, 165–197 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Circ. Res. 118, 692–702 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Raines, E. W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81, 173–182 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Su, Z. et al. ROS-triggered and regenerating anticancer nanosystem: an effective strategy to subdue tumor’s multidrug resistance. J. Control. Release 196, 370–383 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Cardiovasc. Res. 100, 7–18 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Am. J. Physiol. 315, H838–H846 (2018).

    CAS  Google Scholar 

  • 27.

    Stem Cell Res. Ther. 6, 216 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Surf. Sci. 500, 28–60 (2002).

    CAS  Article  Google Scholar 

  • 29.

    Draude, F. et al. Characterization of freeze-fractured epithelial plasma membranes on nanometer scale with ToF-SIMS. Anal. Bioanal. 407, 2203–2211 (2015).

    CAS  Article  Google Scholar 

  • 30.

    Biomaterials 24, 4655–4661 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Colloid Surf. B 124, 49–68 (2014).

    CAS  Article  Google Scholar 

  • 32.

    de Gracia Lux, C. et al. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758–15764 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Starke, R. D. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 117, 1071–1080 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Neth. J. 15, 100–108 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Langeveld, B. et al. Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis. J. Vasc. Res. 41, 377–386 (2004).

    PubMed  Article  Google Scholar 

  • 36.

    Tsai, Y. C. et al. Angiopoietin-2, Angiopoietin-1 and subclinical cardiovascular disease in chronic kidney disease. Sci. Rep. 6, 39400 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Sci. Rep. 7, 44769 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Douglas, G. et al. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification. Eur. J. 34, 3378–3388 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    J. Tissue Eng. 8, 2041731417731546 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Trends Biotechnol. 30, 406–409 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Arterioscler. Thromb. Vasc. Biol. 32, 1104–1115 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Lee, J. G. et al. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci. Rep. 9, 2628 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Cardiovasc. Res. 114, 540–550 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Br. J. Dermatol. 169, 12–19 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Yonetsu, T. et al. Comparison of incidence and time course of neoatherosclerosis between bare metal stents and drug-eluting stents using optical coherence tomography. Am. J. Cardiol. 110, 933–939 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    J. Angiogenes. Res. 1, 4 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    He, X. et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019, 7132708 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Mahdavi Gorabi, A. et al. The role of mesenchymal stem cells in atherosclerosis: prospects for therapy via the modulation of inflammatory milieu. J. Clin. Med. 8, 1413 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 49.

    Li, J. et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/− mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem. Bioph. Res. Commun. 510, 565–572 (2019).

    CAS  Article  Google Scholar 

  • 50.

    Atherosclerosis 240, 424–430 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Koltsova, E. K. et al. Interleukin-27 receptor limits atherosclerosis in Ldlr−/− mice. Circ. Res. 111, 1274–1285 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Van Weel, V. et al. Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler. Thromb. Vasc. Biol. 27, 2310–2318 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 53.

    Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Vandergriff, A. C. et al. Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int. 2015, 960926 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Qiao, L. et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest. 129, 2237–2250 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Macromol. Biosci. 16, 635–646 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. J. 38, 201–211 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Zhang, B. et al. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 20, 687–696 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Poh, K. K. et al. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, ‘off-the-shelf’, cellular cardiomyoplasty strategy. Int. J. Cardiol. 117, 360–364 (2007).

    PubMed  Article  Google Scholar 

  • 60.

    Elnaggar, M. A. et al. Nitric oxide releasing coronary stent: a new approach using layer-by-layer coating and liposomal encapsulation. Small 12, 6012–6023 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    J. Cell Sci. 129, 2182–2189 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Ferguson, S. W. et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci. Rep. 8, 1419 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Beltrami, C. et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed micrornas and promotes therapeutic angiogenesis. Mol. Ther. 25, 679–693 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Anderson, J. D. et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappa B signaling. Stem Cells 34, 601–613 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Physiol. Rev. 84, 767–801 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Lavin, B. et al. Nitric oxide prevents aortic neointimal hyperplasia by controlling macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 34, 1739–1746 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    McDonald, R. A. et al. Reducing in-stent restenosis: therapeutic manipulation of mirna in vascular remodeling and inflammation. J. Am. Coll. Cardiol. 65, 2314–2327 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Yan, W. et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 10, 10712–10728 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Piccolo, R. et al. Drug-eluting or bare-metal stents for percutaneous coronary intervention: a systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet 393, 2503–2510 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    World J. Cardiol. 9, 640–651 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Huang, P. et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res. 116, 353–367 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Lim, S. Y. et al. Inflammation and delayed endothelization with overlapping drug-eluting stents in a porcine model of in-stent restenosis. Circ. J. 72, 463–468 (2008).

    PubMed  Article  Google Scholar 

  • 74.

    Liu, F. et al. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of asherman’s syndrome. Adv. Healthc. Mater. 8, 1900411 (2019).

    Article  CAS  Google Scholar 

  • 75.

    Dinh, P. C. et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Commun. 11, 1064 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Ozbilgin, S. et al. Renal ischemia/reperfusion injury in diabetic rats: the role of local ischemic preconditioning. Biomed. Res. Int. 2016, 8580475 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Johnson, T. W. et al. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler. Thromb. Vasc. Biol. 25, 754–759 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Mol. Med. Rep. 15, 21–28 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Methods Mol. Biol. 1732, 507–517 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Read original article here.