Further validation of the efficacy of mesenchymal stem cell
infusions for reducing mortality in COVID-19 patients with
ARDS
  • 1.

    N. Engl. J. Med. 382, 692–694 (2020).

    CAS  Article  Google Scholar 

  • 2.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Neumann-Podczaska, A. et al. COVID 19 – clinical picture in the elderly population: a qualitative systematic review. Aging Dis. 11, 988–1008 (2020).

    Article  Google Scholar 

  • 4.

    Sohrabi, C. et al. World Health Organization declares Global Emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).

    Article  Google Scholar 

  • 5.

    Barzilai, N. et al. Geroscience in the age of COVID-19. Aging Dis. 11, 725–729 (2020).

    Article  Google Scholar 

  • 6.

    N. Engl. J. Med. 383, 2451–2460 (2020).

    CAS  Article  Google Scholar 

  • 7.

    JAMA 324, 1565–1567 (2020).

    CAS  Article  Google Scholar 

  • 8.

    Leng, Z. et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 11, 216–228 (2020).

    Article  Google Scholar 

  • 9.

    Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271.e8–280.e8 (2020).

    Article  Google Scholar 

  • 10.

    Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    CAS  Article  Google Scholar 

  • 11.

    JAMA 324, 782–793 (2020).

    CAS  Article  Google Scholar 

  • 12.

    Wu, C. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern. Med. 180, 934–943 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Demoule, A. et al. High-flow nasal cannula in critically iii patients with severe COVID-19. Am. J. Respir. Crit. Care Med. 202, 1039–1042 (2020).

    CAS  Article  Google Scholar 

  • 14.

    Lanzoni, G. et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl. Med. 10, 660–673 (2021).

    Article  Google Scholar 

  • 15.

    N. Engl. J. Med. 382, 1268–1269 (2020).

    CAS  Article  Google Scholar 

  • 16.

    Li, H. et al. Updated approaches against SARS-CoV-2. Antimicrob. Agents Chemother. 64, e00483–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Aging Dis. 12, 155–191 (2021).

    Article  Google Scholar 

  • 18.

    Liang, B. et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report. Medicine 99, e21429 (2020).

    CAS  Article  Google Scholar 

  • 19.

    Iglesias, M. et al. Mesenchymal stem cells for the compassionate treatment of severe acute respiratory distress syndrome due to COVID 19. Aging Dis. 12, 360–370 (2021).

    Article  Google Scholar 

  • 20.

    Metcalfe, S. M. Mesenchymal stem cells and management of COVID-19 pneumonia. Med. Drug Discov. 5, 100019 (2020).

    Article  Google Scholar 

  • 21.

    Shetty, A. K. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis. 11, 462–464 (2020).

    Article  Google Scholar 

  • 22.

    Guo, Z. et al. Administration of umbilical cord mesenchymal stem cells in patients with severe COVID-19 pneumonia. Crit. Care 14, 420 (2020).

    Article  Google Scholar 

  • 23.

    Front. Cell. Dev. Biol. 8, 627414 (2021).

    Article  Google Scholar 

  • 24.

    Shi, L. et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct. Target. Ther. 6, 58 (2021).

    CAS  Article  Google Scholar 

  • 25.

    Prockop, D. J. The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 19, 1–8 (2017).

    Article  Google Scholar 

  • 26.

    Connick, P. et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 11, 150–156 (2012).

    Article  Google Scholar 

  • 27.

    Wilson, J. G. et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir. Med. 3, 24–32 (2015).

    Article  Google Scholar 

  • 28.

    Fisher, S. A. et al. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition. Cochrane Database Syst. Rev. 1, CD009768 (2019).

    PubMed  Google Scholar 

  • 29.

    Metabolism 90, 1–15 (2019).

    Article  Google Scholar 

  • 30.

    Biomed. Pharmacother. 91, 693–706 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Cell Transpl. 29, 963689720940719 (2020).

    Article  Google Scholar 

  • 32.

    Park, Y. J. et al. Fighting the war against COVID-19 via cell-based regenerative medicine: lessons learned from 1918 Spanish flu and other previous pandemics. Stem Cell Rev. Rep. 17, 9–32 (2021).

    CAS  Article  Google Scholar 

  • 33.

    Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    CAS  Article  Google Scholar 

  • 34.

    Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.101019 (2021).

  • 35.

    Ann. Intern Med. 172, ITC33–ITC48 (2020).

    Article  Google Scholar 

  • 36.

    Mayo Clin. Proc. Innov. Qual. Outcomes 4, 764–766 (2020).

    Article  Google Scholar 

  • 37.

    Pharmacol. Ther. 24, 107716 (2020).

    Google Scholar 

  • Read original article here.