Immunomodulation for optimal cardiac regeneration: insights
from comparative analyses
  • 1.

    Stem Cells Transl. Med. (2015).

  • 2.

    Vascul. Pharmacol. (2013).

  • 3.

    Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. BMJ (2019).

  • 4.

    Integr. Pharm. Res. Pract. (2019),

  • 5.

    Bloom, D. E. et al. Methodological Appendix: the Global Economic Burden of Non-communicable Diseases. World Economic Forum (2011).

  • 6.

    Treatment for heart failure. (2018).

  • 7.

    Nat. Rev. Cardiol. (2018).

  • 8.

    Giacca, M. Cardiac regeneration after myocardial infarction: an approachable goal. Curr. Cardiol. Rep. (2020).

  • 9.

    Cell Stem Cell (2020).

  • 10.

    Circulat. J. (2019).

  • 11.

    Menasché, P. Cell therapy trials for heart regeneration—lessons learned and future directions. Nat. Rev. Cardiol. (2018).

  • 12.

    npj Regen. Med. (2017).

  • 13.

    Tang, X. L. et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at Lea. Circ. Res. (2016).

  • 14.

    Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science (2016).

  • 15.

    Stem Cell Rev. Rep. (2011).

  • 16.

    J. Immunol. Regen. Med. (2019).

  • 17.

    J. Cell Sci. (2006).

  • 18.

    Regeneration (2017).

  • 19.

    Dev. Dynam. (2003).

  • 20.

    Stockdale, W. T. et al. Regeneration in the Mexican Cavefish. Cell Rep. (2018).

  • 21.

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science (2011).

  • 22.

    Ye, L. et al. Early regenerative capacity in the porcine heart. Circulation (2018).

  • 23.

    Agnew, E. J. et al. Scar formation with decreased cardiac function following ischemia/reperfusion injury in 1 month old swine. J. Cardiovasc. Dev. Dis. 7, 1 (2019).

    Article  Google Scholar 

  • 24.

    Huang, W. C. et al. Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult Zebrafish. PLoS ONE (2013).

  • 25.

    Panahi, M. et al. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc. Res. (2018).

  • 26.

    Christia, P. et al. Systematic Characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J. Histochem. Cytochem. (2013).

  • 27.

    Compr. Physiol. (2015).

  • 28.

    Eur. J. Trauma Emerg. Surg. (2019).

  • 29.

    Am. J. Physiol. (2018).

  • 30.

    Open Biol. (2016).

  • 31.

    Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for Zebrafish heart regeneration. Dev. Cell (2011).

  • 32.

    Lai, S. L. et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife (2017).

  • 33.

    Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. (2015).

  • 34.

    J. Experiment. Med. (2018).

  • 35.

    King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. (2017).

  • 36.

    Cao, D. J. et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation (2018).

  • 37.

    Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: A randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis.

  • 38.

    Ge, R. et al. Conservation of the STING-mediated cytosolic DNA sensing pathway in Zebrafish. J. Virol. (2015).

  • 39.

    Wysoczynski, M. et al. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells (2014).

  • 40.

    Lara-Astiaso, D. et al. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. Springerplus (2012).

  • 41.

    Orrem, H. L. et al. Acute heart failure following myocardial infarction: complement activation correlates with the severity of heart failure in patients developing cardiogenic shock. ESC Hear. Fail. (2018)

  • 42.

    Lazar, H. L. et al. Soluble complement receptor type I limits damage during revascularization of ischemic myocardium. Ann. Thorac. Surg. (1998)

  • 43.

    Granger, C. B. et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: The COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation (2003).

  • 44.

    Cell. Mol. Life Sci. (2019).

    Article  PubMed  Google Scholar 

  • 45.

    Natarajan, N. et al. Complement receptor C5AR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation (2018)

  • 46.

    Deng, L. et al. Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Sci. Rep. (2015).

  • 47.

    Vasilyev, N. et al. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation (2005).

  • 48.

    Zhang, X. et al. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int. J. Cardiol. (2018).

  • 49.

    Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell (2014).

  • 50.

    Kaikita, K. et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. (2004).

  • 51.

    Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. (2014).

  • 52.

    Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA (2014).

  • 53.

    Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. (2018).

  • 54.

    Bajpai, G. et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA (2019).

  • 56.

    Wang, Z. et al. Distinct origins and functions of cardiac orthotopic macrophages. Basic Res. Cardiol. (2020).

  • 57.

    Immunol. Rev. (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Front. Immunol. 5, 1–22 (2014).

    CAS  Article  Google Scholar 

  • 59.

    Sommerfeld, S. D. et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4(40), eaax4783, (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Microvasc. Res. (2010).

  • 61.

    Sánchez-Iranzo, H. et al. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl Acad. Sci. USA (2018).

  • 62.

    npj Regen. Med. (2017).

  • 63.

    Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. (2020).

  • 64.

    Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. (2018).

  • 65.

    Nat. Rev. Immunol. (2011).

  • 66.

    Front. Cardiovasc. Med. 6, 1–9 (2019).

    Article  Google Scholar 

  • 67. (2019).

  • 68.

    Nat. Rev. Immunol. (2019).

  • 69.

    Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. (2016).

  • 70.

    Toor, I. S. et al. Eosinophil deficiency promotes aberrant repair and adverse remodeling following acute myocardial infarction. JACC Basic to Transl. Sci. (2020).

  • 71.

    Toor, I. S. et al. E Eosinophils have an essential role in cardiac repair following myocardial infarction. (2017).

  • 72.

    Rios-Navarro, C. et al. Characterization and implications of the dynamics of eosinophils in blood and in the infarcted myocardium after coronary reperfusion. PLoS ONE (2018).

  • 73.

    Bevan, L. et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. (2020).

  • 74.

    Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation (2017).

  • 75.

    Nat. Rev. Cardiol. (2020).

    Article  PubMed  Google Scholar 

  • 76.

    Payne, S. et al. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat. Commun. (2019).

  • 77.

    Marín-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA (2016).

  • 78.

    Front. Immunol. 9, 1–15 (2018).

    Article  Google Scholar 

  • 79.

    Antioxid. Redox Signal. (2013).

  • 80.

    Adv. Wound Care (2015).

  • 81.

    Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature (2014).

  • 82.

    Kaveh, A. et al. Live imaging of heart injury in larval Zebrafish reveals a multi-stage model of neutrophil and macrophage migration. Front. Cell Dev. Biol. (2020).

  • 83.

    Kain, V. et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell. Cardiol. (2015).

  • 84.

    J. Cardiovasc. Dev. Dis. (2019).

  • 85.

    Richardson, R. J. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. npj Regen. Med. (2018).

  • 86.

    Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. (2013).

  • 87.

    Circ. Res. (2004).

  • 88.

    Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. (2013).

  • 89.

    J. Immunol. Res. (2019).

  • 90.

    Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell (2017).

  • 91.

    Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. (2018).

  • 92.

    Li, J. et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics (2019).

  • 93.

    Zhao, R. X. et al. Increased peripheral proinflammatory t helper subsets contribute to cardiovascular complications in diabetic patients. Mediators Inflamm. (2014).

  • 94.

    Trends Cardiovas. Med. (2012).

  • 95.

    Minerva Cardioangiol. 58, 127–146 (2010).

    CAS  PubMed  Google Scholar 

  • 96.

    Autoimmune Rev. (2015).

  • 97.

    Funda, D. P. et al. Optimal tolerogenic dendritic cells in type 1 diabetes (T1D) therapy: What Can We Learn from Non-obese Diabetic (NOD) mouse models? Front. Immunol. (2019).

  • 98.

    Choo, E. H. et al. Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation (2017).

  • 99.

    Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature (2020).

  • 100.

    Rizzo, G. et al. Single-cell transcriptomic profiling maps monocyte/macrophage transitions after myocardial infarction in mice. bioRxiv 2020.04.14.040451 (2020).

  • 101.

    Acta Biomaterialia (2017).

  • Read original article here.