Immunomodulation for optimal cardiac regeneration: insights
from comparative analyses
  • 1.

    Stem Cells Transl. Med. https://doi.org/10.5966/sctm.2015-0118. (2015).

  • 2.

    Vascul. Pharmacol. https://doi.org/10.1016/j.vph.2012.08.001. (2013).

  • 3.

    Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. BMJ https://doi.org/10.1136/bmj.l223. (2019).

  • 4.

    Integr. Pharm. Res. Pract. https://doi.org/10.2147/iprp.s133088. (2019),

  • 5.

    Bloom, D. E. et al. Methodological Appendix: the Global Economic Burden of Non-communicable Diseases. World Economic Forum (2011).

  • 6.

    Treatment for heart failure. https://www.nhs.uk/conditions/heart-failure/treatment/. (2018).

  • 7.

    Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-018-0079-8. (2018).

  • 8.

    Giacca, M. Cardiac regeneration after myocardial infarction: an approachable goal. Curr. Cardiol. Rep. https://doi.org/10.1007/s11886-020-01361-7. (2020).

  • 9.

    Cell Stem Cell https://doi.org/10.1016/j.stem.2019.12.004. (2020).

  • 10.

    Circulat. J. https://doi.org/10.1253/circj.CJ-19-0567. (2019).

  • 11.

    Menasché, P. Cell therapy trials for heart regeneration—lessons learned and future directions. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-018-0013-0. (2018).

  • 12.

    npj Regen. Med. https://doi.org/10.1038/s41536-017-0022-3. (2017).

  • 13.

    Tang, X. L. et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at Lea. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.115.307647. (2016).

  • 14.

    Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science https://doi.org/10.1126/science.aaf1502. (2016).

  • 15.

    Stem Cell Rev. Rep. https://doi.org/10.1007/s12015-010-9202-x. (2011).

  • 16.

    J. Immunol. Regen. Med. https://doi.org/10.1016/j.regen.2019.100016. (2019).

  • 17.

    J. Cell Sci. https://doi.org/10.1242/jcs.03252. (2006).

  • 18.

    Regeneration https://doi.org/10.1002/reg2.83. (2017).

  • 19.

    Dev. Dynam. https://doi.org/10.1002/dvdy.10220. (2003).

  • 20.

    Stockdale, W. T. et al. Regeneration in the Mexican Cavefish. Cell Rep. https://doi.org/10.1016/j.celrep.2018.10.072. (2018).

  • 21.

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science https://doi.org/10.1126/science.1200708. (2011).

  • 22.

    Ye, L. et al. Early regenerative capacity in the porcine heart. Circulation https://doi.org/10.1161/CIRCULATIONAHA.117.031542. (2018).

  • 23.

    Agnew, E. J. et al. Scar formation with decreased cardiac function following ischemia/reperfusion injury in 1 month old swine. J. Cardiovasc. Dev. Dis. 7, 1 (2019).

    Article  Google Scholar 

  • 24.

    Huang, W. C. et al. Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult Zebrafish. PLoS ONE https://doi.org/10.1371/journal.pone.0066613. (2013).

  • 25.

    Panahi, M. et al. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvy145. (2018).

  • 26.

    Christia, P. et al. Systematic Characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J. Histochem. Cytochem. https://doi.org/10.1369/0022155413493912. (2013).

  • 27.

    Compr. Physiol. https://doi.org/10.1002/cphy.c140067. (2015).

  • 28.

    Eur. J. Trauma Emerg. Surg. https://doi.org/10.1007/s00068-019-01235-w. (2019).

  • 29.

    Am. J. Physiol. https://doi.org/10.1152/ajpheart.00158.2018. (2018).

  • 30.

    Open Biol. https://doi.org/10.1098/rsob.160101. (2016).

  • 31.

    Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for Zebrafish heart regeneration. Dev. Cell https://doi.org/10.1016/j.devcel.2011.01.010. (2011).

  • 32.

    Lai, S. L. et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife https://doi.org/10.7554/eLife.25605. (2017).

  • 33.

    Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. https://doi.org/10.1038/cr.2015.110. (2015).

  • 34.

    J. Experiment. Med. https://doi.org/10.1084/jem.20180139. (2018).

  • 35.

    King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. https://doi.org/10.1038/nm.4428. (2017).

  • 36.

    Cao, D. J. et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation https://doi.org/10.1161/CIRCULATIONAHA.117.031046. (2018).

  • 37.

    Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: A randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2015-208562.

  • 38.

    Ge, R. et al. Conservation of the STING-mediated cytosolic DNA sensing pathway in Zebrafish. J. Virol. https://doi.org/10.1128/jvi.01049-15. (2015).

  • 39.

    Wysoczynski, M. et al. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells https://doi.org/10.1002/stem.1743. (2014).

  • 40.

    Lara-Astiaso, D. et al. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. Springerplus https://doi.org/10.1186/2193-1801-1-63. (2012).

  • 41.

    Orrem, H. L. et al. Acute heart failure following myocardial infarction: complement activation correlates with the severity of heart failure in patients developing cardiogenic shock. ESC Hear. Fail. https://doi.org/10.1002/ehf2.12266. (2018)

  • 42.

    Lazar, H. L. et al. Soluble complement receptor type I limits damage during revascularization of ischemic myocardium. Ann. Thorac. Surg. https://doi.org/10.1016/s0003-4975(98)00021-6. (1998)

  • 43.

    Granger, C. B. et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: The COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation https://doi.org/10.1161/01.CIR.0000087447.12918.85. (2003).

  • 44.

    Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-018-2995-5 (2019).

    Article  PubMed  Google Scholar 

  • 45.

    Natarajan, N. et al. Complement receptor C5AR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation https://doi.org/10.1161/CIRCULATIONAHA.117.030801. (2018)

  • 46.

    Deng, L. et al. Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Sci. Rep. https://doi.org/10.1038/srep13131. (2015).

  • 47.

    Vasilyev, N. et al. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation https://doi.org/10.1161/CIRCULATIONAHA.105.542340. (2005).

  • 48.

    Zhang, X. et al. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int. J. Cardiol. https://doi.org/10.1016/j.ijcard.2018.07.105. (2018).

  • 49.

    Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell https://doi.org/10.1016/j.cell.2014.03.032. (2014).

  • 50.

    Kaikita, K. et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. https://doi.org/10.1016/S0002-9440(10)63309-3. (2004).

  • 51.

    Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. https://doi.org/10.1172/JCI72181. (2014).

  • 52.

    Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1406508111. (2014).

  • 53.

    Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. https://doi.org/10.1038/s41591-018-0064-0. (2018).

  • 54.

    Bajpai, G. et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.118.314028 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905824116. (2019).

  • 56.

    Wang, Z. et al. Distinct origins and functions of cardiac orthotopic macrophages. Basic Res. Cardiol. https://doi.org/10.1007/s00395-019-0769-3. (2020).

  • 57.

    Immunol. Rev. https://doi.org/10.1111/imr.12223 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Front. Immunol. 5, 1–22 (2014).

    CAS  Article  Google Scholar 

  • 59.

    Sommerfeld, S. D. et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4(40), eaax4783, https://doi.org/10.1126/sciimmunol.aax4783 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Microvasc. Res. https://doi.org/10.1016/j.mvr.2010.03.014. (2010).

  • 61.

    Sánchez-Iranzo, H. et al. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1716713115. (2018).

  • 62.

    npj Regen. Med. https://doi.org/10.1038/s41536-017-0027-y. (2017).

  • 63.

    Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. https://doi.org/10.1038/s41467-019-14263-2. (2020).

  • 64.

    Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. https://doi.org/10.1016/j.celrep.2017.12.072. (2018).

  • 65.

    Nat. Rev. Immunol. https://doi.org/10.1038/nri2990. (2011).

  • 66.

    Front. Cardiovasc. Med. 6, 1–9 (2019).

    Article  Google Scholar 

  • 67.

    https://doi.org/10.1172/JCI124616. (2019).

  • 68.

    Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0141-8. (2019).

  • 69.

    Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvw024. (2016).

  • 70.

    Toor, I. S. et al. Eosinophil deficiency promotes aberrant repair and adverse remodeling following acute myocardial infarction. JACC Basic to Transl. Sci. https://doi.org/10.1016/j.jacbts.2020.05.005. (2020).

  • 71.

    Toor, I. S. et al. E Eosinophils have an essential role in cardiac repair following myocardial infarction. https://doi.org/10.1136/heartjnl-2017-311726.236. (2017).

  • 72.

    Rios-Navarro, C. et al. Characterization and implications of the dynamics of eosinophils in blood and in the infarcted myocardium after coronary reperfusion. PLoS ONE https://doi.org/10.1371/journal.pone.0206344. (2018).

  • 73.

    Bevan, L. et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvz221. (2020).

  • 74.

    Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation https://doi.org/10.1161/CIRCULATIONAHA.117.028252. (2017).

  • 75.

    Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0400-1 (2020).

    Article  PubMed  Google Scholar 

  • 76.

    Payne, S. et al. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat. Commun. https://doi.org/10.1038/s41467-019-10710-2. (2019).

  • 77.

    Marín-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1605431113. (2016).

  • 78.

    Front. Immunol. 9, 1–15 (2018).

    Article  Google Scholar 

  • 79.

    Antioxid. Redox Signal. https://doi.org/10.1089/ars.2012.4849. (2013).

  • 80.

    Adv. Wound Care https://doi.org/10.1089/wound.2013.0485. (2015).

  • 81.

    Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature https://doi.org/10.1038/nature13479. (2014).

  • 82.

    Kaveh, A. et al. Live imaging of heart injury in larval Zebrafish reveals a multi-stage model of neutrophil and macrophage migration. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.579943. (2020).

  • 83.

    Kain, V. et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell. Cardiol. https://doi.org/10.1016/j.yjmcc.2015.04.003. (2015).

  • 84.

    J. Cardiovasc. Dev. Dis. https://doi.org/10.3390/jcdd6030029. (2019).

  • 85.

    Richardson, R. J. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. npj Regen. Med. https://doi.org/10.1038/s41536-018-0059-y. (2018).

  • 86.

    Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. https://doi.org/10.1016/j.yjmcc.2013.04.023. (2013).

  • 87.

    Circ. Res. https://doi.org/10.1161/01.RES.0000130526.20854.fa. (2004).

  • 88.

    Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. https://doi.org/10.1038/nm.3284. (2013).

  • 89.

    J. Immunol. Res. https://doi.org/10.1155/2019/2164017. (2019).

  • 90.

    Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell https://doi.org/10.1016/j.devcel.2017.11.010. (2017).

  • 91.

    Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. https://doi.org/10.1038/s41467-018-04908-z. (2018).

  • 92.

    Li, J. et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics https://doi.org/10.7150/thno.32734. (2019).

  • 93.

    Zhao, R. X. et al. Increased peripheral proinflammatory t helper subsets contribute to cardiovascular complications in diabetic patients. Mediators Inflamm. https://doi.org/10.1155/2014/596967. (2014).

  • 94.

    Trends Cardiovas. Med. https://doi.org/10.1016/j.tcm.2012.07.005. (2012).

  • 95.

    Minerva Cardioangiol. 58, 127–146 (2010).

    CAS  PubMed  Google Scholar 

  • 96.

    Autoimmune Rev. https://doi.org/10.1016/j.autrev.2015.01.014. (2015).

  • 97.

    Funda, D. P. et al. Optimal tolerogenic dendritic cells in type 1 diabetes (T1D) therapy: What Can We Learn from Non-obese Diabetic (NOD) mouse models? Front. Immunol. https://doi.org/10.3389/fimmu.2019.00967. (2019).

  • 98.

    Choo, E. H. et al. Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation https://doi.org/10.1161/CIRCULATIONAHA.116.023106. (2017).

  • 99.

    Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature https://doi.org/10.1038/s41586-019-1802-2. (2020).

  • 100.

    Rizzo, G. et al. Single-cell transcriptomic profiling maps monocyte/macrophage transitions after myocardial infarction in mice. bioRxiv 2020.04.14.040451 https://doi.org/10.1101/2020.04.14.040451. (2020).

  • 101.

    Acta Biomaterialia https://doi.org/10.1016/j.actbio.2017.01.056. (2017).

  • Read original article here.