In vitro expansion of fetal liver hematopoietic stem
cells
  • 1.

    Reprod. Sci. 16(2), 178–187 (2009).

    Article  Google Scholar 

  • 2.

    Cell Stem Cell 13(5), 535–548 (2013).

    Article  Google Scholar 

  • 3.

    Exp. Hematol. 49, 19–24 (2017).

    Article  Google Scholar 

  • 4.

    Trends. Biomater. Artif. Organs. 18, 93–100 (2005).

    Google Scholar 

  • 5.

    Kuchma, M. D. et al. Comparative analysis of the hematopoietic progenitor cells from placenta, cord blood, and fetal liver, based on their immunophenotype. BioMed. Res. Inter. 2015, 1–16 (2015).

    Article  Google Scholar 

  • 6.

    Raju, G. M. K. et al. Colony stimulating activity secreted by human fetal liver cells in comparison to normal adult bone marrow: Role in engraftment after transplantation. Blood 88(1), 258 (1996).

    Google Scholar 

  • 7.

    Blood 87, 3500–3507 (1996).

    CAS  Article  Google Scholar 

  • 8.

    ‘In vitro’ maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89, 4337–4340 (1997).

    CAS  Article  Google Scholar 

  • 9.

    Exp. Hematol. 27, 1418–1427 (1999).

    CAS  Article  Google Scholar 

  • 10.

    Thymus 10, 131–136 (1987).

    CAS  PubMed  Google Scholar 

  • 11.

    Kochupillai, V. et al. Fetal liver infusion in aplastic anemia. Thymus 10(1–2), 95–102 (1987).

    CAS  PubMed  Google Scholar 

  • 12.

    Arjmand, B. et al. Co-transplantation of human fetal mesenchymal and hematopoietic stem cells in Type 1 diabetic mice model. Front. Endocrinol. 10, 761 (2019).

    Article  Google Scholar 

  • 13.

    Mohamed, A. A. et al. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab. Hematol. 12, 86–93 (2006).

    CAS  Article  Google Scholar 

  • 14.

    Piacibello, W. et al. Extensive amplification and self- renewal of human primitive hematopoietic stem cells from cord blood. Blood 89, 2644–2653 (1997).

    CAS  Article  Google Scholar 

  • 15.

    Defelice, L. et al. Flt3L induces the ex-vivo amplification of umbilical cord blood committed progenitors and early stem cells in short-term cultures. Br. J. Haematol. 106, 133–141 (1999).

    CAS  Article  Google Scholar 

  • 16.

    Su, R. J. et al. Platelet-derived growth factor promotes ex vivo expansion of CD34+ cells from human cord blood and enhances long-term culture- initiating cells, non-obese diabetic/severe combined immunodeficient repopulating cells and formation of adherent cells. Br. J. Haematol. 117, 735–746 (2002).

    CAS  Article  Google Scholar 

  • 17.

    Rappold, I. et al. Gp130-signaling synergizes with FL and TPO for the long-term expansion of cord blood progenitors. 13(12), 2036–2048 (1999).

    CAS  Article  Google Scholar 

  • 18.

    Lazzari, L. et al. Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. Br. J. Haematol. 112, 397–404 (2001).

    CAS  Article  Google Scholar 

  • 19.

    Fietz, T. et al. Culturing human umbilical cord blood: a comparison of mononuclear vs CD34+ selected cells. Bone. Marrow. Transplanta. 11, 1109–1115 (1999).

    Article  Google Scholar 

  • 20.

    Kaushansky, K. et al. Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J. Clin. Invest. 3, 1683–1687 (1995).

    Article  Google Scholar 

  • 21.

    Kawada, H. et al. Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system. Exp. Hematol. 27, 904–915 (1999).

    CAS  Article  Google Scholar 

  • 22.

    Yao, C. L. et al. Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133 (+) cells. Stem. Cells. Dev. 15, 70–78 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Chivu, M. et al. The comparison of different protocols for expansion of umbilical-cord blood hematopoietic stem cells. J. Cell. Mol. Med. 8, 223–231 (2004).

    CAS  Article  Google Scholar 

  • 24.

    Rollini, P. Long term ex vivo expansion of transplantable human fetal liver hematopoietic stem cells. Blood 103, 1166–1170 (2004).

    CAS  Article  Google Scholar 

  • 25.

    In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23, 7223–7232 (2004).

    CAS  Article  Google Scholar 

  • 26.

    18, 341–347 (2004).

    CAS  Article  Google Scholar 

  • 27.

    Exp Hematol. 19, 226–238 (1991).

    CAS  Google Scholar 

  • 28.

    Sui, X. et al. Erythropoietin-independent erythrocyte production: Signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. J Exp Med. 183, 837 (1996).

    CAS  Article  Google Scholar 

  • 29.

    Blood 92, 452–461 (1998).

    CAS  Article  Google Scholar 

  • 30.

    ‘in vitro’ evaluation using semisolid clonal assay system. Stem. Cells. 17, 107–116 (1999).

    CAS  Article  Google Scholar 

  • 31.

    J. Clin. Invest. 110, 389–394 (2002).

    CAS  Article  Google Scholar 

  • 32.

    Schuster, J. A. et al. Expansion of hematopoietic stem cells for transplantation: current perspectives. Exp. Hematol. Oncol. 1, 12 (2012).

    Article  Google Scholar 

  • 33.

    Jing, L. et al. In Vitro expansion of hematopoietic stem cells by inhibition of both GSK3 and p38 signaling. Stem. Cells. Develop. 28(22), 1–12 (2019).

    Google Scholar 

  • Read original article here.