Interrogation of clonal tracking data using
barcodetrackR
  • 1.

    Nat. Biotechnol. 29, 928–933 (2011).

    Google Scholar 

  • 2.

    Wu, C. et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14, 486–499 (2014).

    Google Scholar 

  • 3.

    Radtke, S. et al. A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Sci. Transl. Med. 9, eaan1145 (2017).

    Google Scholar 

  • 4.

    Kim, S. et al. Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. Cell Stem Cell 14, 473–485 (2014).

    Google Scholar 

  • 5.

    Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    Google Scholar 

  • 6.

    Wu, C. et al. Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation. J. Exp. Med. 215, 217–232 (2018).

    Google Scholar 

  • 7.

    Six, E. et al. Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 135, 1219–1231 (2020).

    Google Scholar 

  • 8.

    Biasco, L. et al. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19, 107–119 (2016).

    Google Scholar 

  • 9.

    Koelle, S. J. et al. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants. Blood 129, 1448–1457 (2017).

    Google Scholar 

  • 10.

    Brugman, M. H. et al. Development of a diverse human T-cell repertoire despite stringent restriction of hematopoietic clonality in the thymus. Proc. Natl Acad. Sci. USA 112, E6020–E6027 (2015).

    Google Scholar 

  • 11.

    Wu, C. et al. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci. Immunol. 3, eaat9781 (2018).

    Google Scholar 

  • 12.

    Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 766 (2019).

    Google Scholar 

  • 13.

    Genome Biol. 15, R75 (2014).

    Google Scholar 

  • 14.

    Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).

    Google Scholar 

  • 15.

    Br. J. Haematol. https://doi.org/10.1111/bjh.17175 (2020).

  • 16.

    Berry, C. C. et al. INSPIIRED: quantification and visualization tools for analyzing integration site distributions. Mol. Ther. Methods Clin. Dev. 4, 17–26 (2017).

    Google Scholar 

  • 17.

    Sherman, E. et al. INSPIIRED: a pipeline for quantitative analysis of sites of new DNA integration in cellular genomes. Mol. Ther. Methods Clin. Dev. 4, 39–49 (2017).

    Google Scholar 

  • 18.

    Bioinformatics 36, 2189–2194 (2020).

    Google Scholar 

  • 19.

    Bramlett, C. et al. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat. Protoc. 15, 1436–1458 (2020).

    Google Scholar 

  • 20.

    Bioinformatics 30, 1493–1500 (2014).

    Google Scholar 

  • 21.

    Mol. Ther. Methods Clin. Dev. 17, 752–757 (2020).

    Google Scholar 

  • 22.

    Hocum, J. D. et al. VISA – Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing. BMC Bioinformatics 16, 212 (2015).

    Google Scholar 

  • 23.

    Spinozzi, G. et al. VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites. BMC Bioinformatics 18, 520 (2017).

    Google Scholar 

  • 24.

    Hawkins, T. B. et al. Identifying viral integration sites using SeqMap 2.0. Bioinformatics 27, 720–722 (2011).

    Google Scholar 

  • 25.

    Bioinformatics 31, 1913–1919 (2015).

    Google Scholar 

  • 26.

    Bioinformatics 34, 739–747 (2018).

    Google Scholar 

  • 27.

    Genome Biol. 19, 15 (2018).

    Google Scholar 

  • 28.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Google Scholar 

  • 29.

    Lyne, A.-M. et al. A track of the clones: new developments in cellular barcoding. Exp. Hematol. 68, 15–20 (2018).

    Google Scholar 

  • 30.

    Espinoza, D. A. et al. Aberrant clonal hematopoiesis following lentiviral vector transduction of HSPCs in a rhesus macaque. Mol. Ther. 27, 1074–1086 (2019).

    Google Scholar 

  • 31.

    Belderbos, M. E. et al. Donor-to-donor heterogeneity in the clonal dynamics of transplanted human cord blood stem cells in murine xenografts. Biol. Blood Marrow Transplant. 26, 16–25 (2020).

    Google Scholar 

  • 32.

    Elder, A. et al. Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia. 31, 2577–2586 (2017).

    Google Scholar 

  • 33.

    Clarke, E. L. et al. T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Med. 10, 70 (2018).

    Google Scholar 

  • 34.

    https://bioconductor.org/packages/SummarizedExperiment

  • 35.

    https://CRAN.R-project.org/package=shiny

  • 36.

    Truitt, L. L. et al. Impact of CMV infection on natural killer cell clonal repertoire in CMV-naïve rhesus macaques. Front. Immunol. 10, 2381 (2019).

    Google Scholar 

  • 37.

    Adair, J. E. et al. DNA barcoding in nonhuman primates reveals important limitations in retrovirus integration site analysis. Mol. Ther. Methods Clin. Dev. 17, 796–809 (2020).

    Google Scholar 

  • 38.

    Thielecke, L. et al. Limitations and challenges of genetic barcode quantification. Sci. Rep. 7, 43249 (2017).

    Google Scholar 

  • 39.

    Nat. Rev. Genet. 20, 273–282 (2019).

    Google Scholar 

  • 40.

    J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH  Google Scholar 

  • 41.

    Lin, D. S. et al. DiSNE movie visualization and assessment of clonal kinetics reveal multiple trajectories of dendritic cell development. Cell Rep. 22, 2557–2566 (2018).

    Google Scholar 

  • 42.

    Genome Biol. 17, 86 (2016).

    Google Scholar 

  • 43.

    Genome Biol. 17, 69 (2016).

    Google Scholar 

  • 44.

    Genome Res. 29, 1847–1859 (2019).

    Google Scholar 

  • 45.

    Sadeqi Azer, E. et al. PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem. Bioinformatics 36, i169–i176 (2020).

    Google Scholar 

  • 46.

    Bioinformatics https://doi.org/10.1093/bioinformatics/btaa672 (2020).

  • 47.

    Nat. Methods 15, 871–879 (2018).

    Google Scholar 

  • 48.

    Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan

  • 49.

    https://CRAN.R-project.org/package=ggdendro

  • 50.

    Bioinformatics 30, 2811–2812 (2014).

    Google Scholar 

  • 51.

    Clarke, E. SCID multiomics post-processed data and analysis (version v0.1.0) [data set]. Zenodo https://doi.org/10.5281/zenodo.1256169 (2018).

  • 52.

    Zenodo https://doi.org/10.5281/zenodo.4609410 (2021).

  • 53.

    Code Ocean https://doi.org/10.24433/CO.6231752.v2 (2021).

  • Read original article here.