Metabolic regulation of skeletal cell fate and function in
physiology and disease
  • 1.

    Capulli, M., Paone, R. & Rucci, N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 561, 3–12 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Rodan, G. A. Introduction to bone biology. Bone 13, S3–S6 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Krishnan, Y. & Grodzinsky, A. J. Cartilage diseases. Matrix Biol. 71–72, 51–69 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Hallett, S. A., Ono, W. & Ono, N. Growth plate chondrocytes: skeletal development, growth and beyond. Int. J. Mol. Sci. 20, 6009 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • 6.

    Roberts, S. J., van Gastel, N., Carmeliet, G. & Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10–18 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Bukowska, J. et al. Bone marrow adipocyte developmental origin and biology. Curr. Osteoporos. Rep. 16, 312–319 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Hoggatt, J., Kfoury, Y. & Scadden, D. T. Hematopoietic stem cell niche in health and disease. Annu. Rev. Pathol. 11, 555–581 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e1916 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Severe, N. et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell 25, 570–583.e577 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell Dev. Biol. 7, 189 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Serowoky, M. A., Arata, C. E., Crump, J. G. & Mariani, F. V. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 147, dev179325 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Salazar-Noratto, G. E. et al. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells 38, 22–33 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. & Eliseev, R. A. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114–122 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Stegen, S. et al. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone 87, 176–186 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Tournaire, G. et al. Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone 133, 115259 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Fillmore, N. et al. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS ONE 10, e0120257 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Board, M. et al. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. Int. J. Biochem. Cell Biol. 88, 75–83 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Newman, J. C. & Verdin, E. β-Hydroxybutyrate: a signaling metabolite. Annu. Rev. Nutr. 37, 51–76 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Kurmi, K. & Haigis, M. C. Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 30, 408–424 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Hu, G. et al. The amino acid sensor Eif2ak4/GCN2 is required for proliferation of osteoblast progenitors in mice. J. Bone Miner. Res. 35, 2004–2014 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Chen, Y. et al. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci. Rep. 39, BSR20181108 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell 53, 530–544.e8 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Stegen, S. et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Yu, Y. et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29, 966–978.e964 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Masson, J. et al. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J. Neurosci. 26, 4660–4671 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    van Gastel, N. et al. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab. 32, 391–403.e6 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 39.

    Kristensen, H. B., Andersen, T. L., Marcussen, N., Rolighed, L. & Delaisse, J. M. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J. Bone Miner. Res. 28, 574–585 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Prisby, R. et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J. Bone Miner. Res. 26, 2583–2596 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Dirckx, N. et al. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism. J. Clin. Invest. 128, 1087–1105 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Zoch, M. L., Abou, D. S., Clemens, T. L., Thorek, D. L. & Riddle, R. C. In vivo radiometric analysis of glucose uptake and distribution in mouse bone. Bone Res. 4, 16004 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Li, Z. et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology 157, 4094–4103 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Wei, J. et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161, 1576–1591 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Zoidis, E., Ghirlanda-Keller, C. & Schmid, C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol. Cell. Biochem. 348, 33–42 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Dirckx, N., Moorer, M. C., Clemens, T. L. & Riddle, R. C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15, 651–665 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Lee, W. C., Ji, X., Nissim, I. & Long, F. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 32, 108108 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Borle, A. B., Nichols, N. & Nichols, G. Jr. Metabolic studies of bone in vitro. I. Normal bone. J. Biol. Chem. 235, 1206–1210 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Esen, E., Lee, S. Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Miner. Res. 30, 2137 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Regan, J. N. et al. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation. Proc. Natl Acad. Sci. USA 111, 8673–8678 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Lee, S. Y. & Long, F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J. Clin. Invest. 128, 5573–5586 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Chen, H. et al. Increased glycolysis mediates Wnt7b-induced bone formation. FASEB J. 33, 7810–7821 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Schmid, C., Steiner, T. & Froesch, E. R. Parathormone promotes glycogen formation from [14C]glucose in cultured osteoblast-like cells. FEBS Lett. 148, 31–34 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Schajowicz, F. & Cabrini, R. L. Histochemical studies on glycogen in normal ossification and calcification. J. Bone Joint Surg. Am. 40-A, 1081–1092 (1958).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Scott, B. L. & Glimcher, M. J. Distribution of glycogen in osteoblasts of the fetal rat. J. Ultrastruct. Res. 36, 565–586 (1971).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Dodds, R. A., Ali, N., Pead, M. J. & Lanyon, L. E. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J. Bone Miner. Res. 8, 261–267 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Dodds, R. A., Catterall, A., Bitensky, L. & Chayen, J. Effects on fracture healing of an antagonist of the vitamin K cycle. Calcif. Tissue Int. 36, 233–238 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Dodds, R. A., Catterall, A., Bitensky, L. & Chayen, J. Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone 7, 489–495 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Guntur, A. R., Le, P. T., Farber, C. R. & Rosen, C. J. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155, 1589–1595 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 63.

    Yu, B. et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23, 193–209.e5 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Pan, J. X. et al. APP promotes osteoblast survival and bone formation by regulating mitochondrial function and preventing oxidative stress. Cell Death Dis. 9, 1077 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Morganti, C. et al. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis. Cells 9, 1034 (2020).

    PubMed Central  Article  Google Scholar 

  • 66.

    Shares, B. H., Busch, M., White, N., Shum, L. & Eliseev, R. A. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J. Biol. Chem. 293, 16019–16027 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Franklin, R. B., Chellaiah, M., Zou, J., Reynolds, M. A. & Costello, L. C. Evidence that osteoblasts are specialized citrate-producing cells that provide the citrate for incorporation into the structure of bone. Open Bone J. 6, 1–7 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Karner, C. M. et al. Wnt Protein signaling reduces nuclear acetyl-CoA levels to suppress gene expression during osteoblast differentiation. J. Biol. Chem. 291, 13028–13039 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Adamek, G., Felix, R., Guenther, H. L. & Fleisch, H. Fatty acid oxidation in bone tissue and bone cells in culture. Characterization and hormonal influences. Biochem. J. 248, 129–137 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Dunham, J. et al. Aerobic glycolysis of bone and cartilage: the possible involvement of fatty acid oxidation. Cell Biochem. Funct. 1, 168–172 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Kim, S. P. et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2, e92704 (2017).

    PubMed Central  Article  Google Scholar 

  • 72.

    Niemeier, A. et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43, 230–237 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Müller, D. I. H. et al. PPARδ-mediated mitochondrial rewiring of osteoblasts determines bone mass. Sci. Rep. 10, 8428 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Frey, J. L. et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol. Cell. Biol. 35, 1979–1991 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Stegen, S. et al. Glutamine metabolism in osteoprogenitors is required for bone mass accrual and PTH‐induced bone anabolism in male mice.J. Bone Miner. Res. https://doi.org/10.1002/jbmr.4219 (2020).

  • 76.

    Karner, C. M., Esen, E., Okunade, A. L., Patterson, B. W. & Long, F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J. Clin. Invest. 125, 551–562 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Torzilli, P. A., Arduino, J. M., Gregory, J. D. & Bansal, M. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30, 895–902 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Torzilli, P. A., Grande, D. A. & Arduino, J. M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Amarilio, R. et al. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Maes, C. et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188–199 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Robins, J. C. et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37, 313–322 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Schipani, E. et al. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Maes, C. et al. VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J. Bone Miner. Res. 27, 596–609 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Bywaters, E. G. L. Metabolism of cartilage. Nature 138, 30–31 (1936).

    CAS  Article  Google Scholar 

  • 85.

    Kunin, A. S. & Krane, S. M. The effect of dietary phosphorus on the intermediary metabolism of epiphyseal cartilage from rachitic rats. Biochim. Biophys. Acta 107, 203–214 (1965).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Hough, S., Russell, J. E., Teitelbaum, S. L. & Avioli, L. V. Regulation of epiphyseal cartilage metabolism and morphology in the chronic diabetic rat. Calcif. Tissue Int. 35, 115–121 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Silverton, S. F., Matsumoto, H., DeBolt, K., Reginato, A. & Shapiro, I. M. Pentose phosphate shunt metabolism by cells of the chick growth cartilage. Bone 10, 45–51 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Lee, S. Y., Abel, E. D. & Long, F. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nat. Commun. 9, 4831 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 89.

    Stegen, S. et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511–515 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Daimon, T. The presence and distribution of glycogen particles in chondrogenic cells of the tibiotarsal anlage of developing chick embryos. Calcif. Tissue Res. 23, 45–51 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Horigome, Y. et al. Loss of autophagy in chondrocytes causes severe growth retardation. Autophagy 16, 501–511 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Daniëls, V. W. et al. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE 9, e106913 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 93.

    Kikuchi, M. et al. Crucial role of Elovl6 in chondrocyte growth and differentiation during growth plate development in mice. PLoS ONE 11, e0159375 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 94.

    Handley, C. J., Speight, G., Leyden, K. M. & Lowther, D. A. Extracellular matrix metabolism by chondrocytes. 7. Evidence that L-glutamine is an essential amino acid for chondrocytes and other connective tissue cells. Biochim. Biophys. Acta 627, 324–331 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Scheller, E. L. et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6, 7808 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Li, Y., Meng, Y. & Yu, X. The unique metabolic characteristics of bone marrow adipose tissue. Front. Endocrinol. 10, 69 (2019).

    Article  Google Scholar 

  • 97.

    Maridas, D. E. et al. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J. 33, 2885–2898 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 98.

    Tencerova, M. et al. Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Res. 7, 35 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 99.

    Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Collins, J. M. et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J. Lipid Res. 52, 1683–1692 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Suchacki, K. J. et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 11, 3097 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 102.

    Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 103.

    Attane, C. et al. Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Rep. 30, 949–958.e946 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Scheller, E. L. et al. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone 118, 32–41 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Hofer, M. et al. The pharmacological activation of adenosine A1 and A3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice. Purinergic Signal. 9, 207–214 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Rossi, L., Salvestrini, V., Ferrari, D., Di Virgilio, F. & Lemoli, R. M. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood 120, 2365–2375 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 109.

    Showalter, M. R. et al. Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochem. Biophys. Res. Commun. 512, 729–735 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Mistry, J. J. et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl Acad. Sci. USA 116, 24610–24619 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Shafat, M. S. et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Grote, C., Reinhardt, D., Zhang, M. & Wang, J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J. Orthop. Res. 37, 1475–1488 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 114.

    Bellantuono, I., Aldahmash, A. & Kassem, M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim. Biophys. Acta 1792, 364–370 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    Neri, S. & Borzì, R. M. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 10, 340 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  • 116.

    Song, J. et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 10, 336 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 117.

    Sui, B., Hu, C. & Jin, Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 17, 267–279 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Huang, T. et al. Aging reduces an ERRalpha-directed mitochondrial glutaminase expression suppressing glutamine anaplerosis and osteogenic differentiation of mesenchymal stem cells. Stem Cells 35, 411–424 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 119.

    Kondrikov, D. et al. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp. Gerontol. 130, 110805 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Pierce, J. L. et al. Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo. Exp. Gerontol. 130, 110818 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Hadjiargyrou, M. & O’Keefe, R. J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J. Bone Miner. Res. 29, 2307–2322 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 122.

    Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 123.

    Arra, M. et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 124.

    Tang, Q. et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 8, e3081 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 125.

    Hu, S. et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis. 11, 481 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 126.

    Choi, W. S. et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature 566, 254–258 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 127.

    Sekar, S. et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 7, 46457 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 128.

    Ratneswaran, A. et al. Peroxisome proliferator-activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol. 67, 454–464 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 129.

    Akasaki, Y. et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage 22, 162–170 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 130.

    Zhong, L., Huang, X., Karperien, M. & Post, J. N. Correlation between gene expression and osteoarthritis progression in human. Int. J. Mol. Sci. 17, 1126 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  • 131.

    Ashraf, S., Mapp, P. I. & Walsh, D. A. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum. 63, 2700–2710 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 132.

    Elefteriou, F. & Yang, X. Genetic mouse models for bone studies—strengths and limitations. Bone 49, 1242–1254 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 133.

    Stiers, P. J., van Gastel, N., Moermans, K., Stockmans, I. & Carmeliet, G. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood. Bone 105, 154–162 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 134.

    Ast, T. & Mootha, V. K. Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat. Metab. 1, 858–860 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 135.

    Lagziel, S., Gottlieb, E. & Shlomi, T. Mind your media. Nat. Metab. https://doi.org/10.1038/s42255-020-00299-y (2020).

  • 136.

    Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 137.

    Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870.e855 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 138.

    Hartmann, F.J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0651-8 (2020).

  • 139.

    Levine, L.S. et al. Single-cell metabolic dynamics of early activated CD8 T cells during the primary immune response to infection. Preprint at bioRxiv https://doi.org/10.1101/2020.01.21.911545 (2020).

  • 140.

    Narendra, D. P. & Steinhauser, M. L. Metabolic analysis at the nanoscale with multi-isotope imaging mass spectrometry (MIMS). Curr. Protoc. Cell Biol. 88, e111 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 141.

    DiGirolamo, D. J., Clemens, T. L. & Kousteni, S. The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Read original article here.