Nociceptive nerves regulate haematopoietic stem cell
mobilization
  • 1.

    Gao, X., Xu, C., Asada, N. & Frenette, P. S. The hematopoietic stem cell niche: from embryo to adult. Development 145, dev139691 (2018).

    Article  Google Scholar 

  • 2.

    Hoggatt, J., Kfoury, Y. & Scadden, D. T. Hematopoietic stem cell niche in health and disease. Annu. Rev. Pathol. 11, 555–581 (2016).

    CAS  Article  Google Scholar 

  • 3.

    Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    CAS  Article  Google Scholar 

  • 4.

    Lucas, D. et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19, 695–703 (2013).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    ADS  Article  Google Scholar 

  • 7.

    Bensinger, W., DiPersio, J. F. & McCarty, J. M. Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant. 43, 181–195 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).

    CAS  Article  Google Scholar 

  • 9.

    Pavlov, V. A., Chavan, S. S. & Tracey, K. J. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36, 783–812 (2018).

    CAS  Article  Google Scholar 

  • 10.

    Pinho-Ribeiro, F. A., Verri, W. A. & Chiu, I. M. Nociceptor sensory neuron–immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Tsunokuma, N. et al. Depletion of neural crest-derived cells leads to reduction in plasma noradrenaline and alters B lymphopoiesis. J. Immunol. 198, 156–169 (2017).

    CAS  Article  Google Scholar 

  • 12.

    Suekane, A. et al. CGRP−CRLR/RAMP1 signal is important for stress-induced hematopoiesis. Sci. Rep. 9, 429 (2019).

    ADS  Article  Google Scholar 

  • 13.

    Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    CAS  Article  Google Scholar 

  • 14.

    Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2011).

    CAS  Article  Google Scholar 

  • 15.

    Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    CAS  Article  Google Scholar 

  • 16.

    Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    CAS  Article  Google Scholar 

  • 17.

    Lucas, D. et al. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 119, 3962–3965 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Shastri, A. et al. Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with G-CSF in multiple myeloma: A pilot study. Am. J. Hematol. 92, 1047–1051 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Ford, C. D., Green, W., Warenski, S. & Petersen, F. B. Effect of prior chemotherapy on hematopoietic stem cell mobilization. Bone Marrow Transplant. 33, 901–905 (2004).

    CAS  Article  Google Scholar 

  • 20.

    Adams, G. B. et al. Haematopoietic stem cells depend on Gαs-mediated signalling to engraft bone marrow. Nature 459, 103–107 (2009).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Hagedorn, E. J., Durand, E. M., Fast, E. M. & Zon, L. I. Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res. 329, 220–226 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Hoggatt, J. et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 495, 365–369 (2013).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Sands, W. A. & Palmer, T. M. Regulating gene transcription in response to cyclic AMP elevation. Cell. Signal. 20, 460–466 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Pulsipher, M. A. et al. Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the National Marrow Donor Program. Blood 113, 3604–3611 (2009).

    CAS  Article  Google Scholar 

  • 25.

    Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor–nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009).

    CAS  Article  Google Scholar 

  • 26.

    Charles, A. & Pozo-Rosich, P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet 394, 1765–1774 (2019).

    Article  Google Scholar 

  • 27.

    Cui, M., Gosu, V., Basith, S., Hong, S. & Choi, S. Polymodal transient receptor potential vanilloid type 1 nocisensor: structure, modulators, and therapeutic applications. Adv. Protein Chem. Struct. Biol. 104, 81–125 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Li, M. et al. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice. PLoS ONE 9, e102356 (2014).

    ADS  Article  Google Scholar 

  • 30.

    Fritz-Six, K. L., Dunworth, W. P., Li, M. & Caron, K. M. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J. Clin. Invest. 118, 40–50 (2008).

    CAS  Article  Google Scholar 

  • Read original article here.