Stem-cell-derived human microglia transplanted into mouse
brain to study human disease
  • 1.

    Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622 (2019).

    CAS  Article  Google Scholar 

  • 2.

    Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, 1248–1259 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    CAS  Article  Google Scholar 

  • 4.

    Mancuso, R. et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat. Neurosci. 22, 2111–2116 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  Article  Google Scholar 

  • 6.

    Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  Article  Google Scholar 

  • 7.

    Douvaras, P. et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports 8, 1516–1524 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Haenseler, W. et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports 8, 1727–1742 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198 (2017).

    CAS  Article  Google Scholar 

  • 12.

    Claes, C. et al. Human stem cell–derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement. 15, 453–464 (2019).

    Article  Google Scholar 

  • 13.

    Front. Cell Neurosci. 12, 1–12 (2018).

    Article  Google Scholar 

  • 14.

    Nat. Rev. Neurosci. 19, 445–452 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Stem Cells 37, 724–730 (2019).

    Article  Google Scholar 

  • 16.

    Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016–1033 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Cell 164, 603–615 (2016).

    Article  Google Scholar 

  • 19.

    Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study disease. Cell 182, 976–991.e19 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Svoboda, D. S. et al. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc. Natl Acad. Sci. USA 116, 25293–25303 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun. 11, 1577 (2020).

  • 22.

    McQuade, A. et al. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol. Neurodegener. 13, 1–13 (2018).

    Article  Google Scholar 

  • 23.

    Yanagimachi, M. D. et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS ONE 8, 1–9 (2013).

    Article  Google Scholar 

  • 24.

    PLoS ONE 8, e71098 (2013).

  • 25.

    Anderson, J. et al. Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology 3, 24 (2006).

  • 26.

    Subramanian, A. et al. Macrophage differentiation from embryoid bodies derived from human embryonic stem cells. J. Stem Cells 4, 29–45 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Nat. Protoc. 6, 296–313 (2011).

    CAS  Article  Google Scholar 

  • 28.

    Rathinam, C. et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118, 3119–3128 (2011).

    CAS  Article  Google Scholar 

  • 29.

    Stem Cells 25, 2206–2214 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Mathys, H. et al. Single-cell transcriptomic analysis of disease. Nature 570, 332–337 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Kunkle, B. W. et al. Genetic meta-analysis of diagnosed disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing disease risk. Nat. Genet. 51, 404–413 (2019).

    CAS  Article  Google Scholar 

  • 34.

    GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1197 (2002).

  • 35.

    Keo, A. et al. Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease. Commun. Biol 3, 1–12 (2020).

    Article  Google Scholar 

  • 36.

    Wang, L. et al. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinson’s disease. Glia 68, 1874–1890 (2020).

  • 37.

    Haenseler, W. et al. Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 38.

    Dwyer, Z. et al. Leucine-rich repeat kinase-2 (LRRK2) modulates microglial phenotype and dopaminergic neurodegeneration. Neurobiol. Aging 91, 45–55 (2020).

    CAS  Article  Google Scholar 

  • 39.

    Prog. Brain Res. 252, 131–168 (2020).

  • 40.

    Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 1–9 (2016).

    Article  Google Scholar 

  • 41.

    Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS  Article  Google Scholar 

  • 42.

    Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    CAS  Article  Google Scholar 

  • 43.

    Cold Spring Harb. Perspect. Med. 2, a007443 (2012).

    Article  Google Scholar 

  • 44.

    Spudich, S. et al. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb. Perspect. Med. 2, a007120 (2012).

  • 45.

    J. Neurol. Neurosurg. Psychiatry 88, 266–271 (2017).

    Article  Google Scholar 

  • 46.

    Martí, M. et al. Characterization of pluripotent stem cells. Nat. Protoc. 8, 223–253 (2013).

    Article  Google Scholar 

  • Read original article here.