Temporal transcriptomic profiling reveals dynamic changes in
gene expression of Xenopus animal cap upon activin
treatment
  • 1.

    de Robertis, E. M., Larraín, J., Oelgeschläger, M. & Wessely, O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171–181 (2000).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Harland, R. & Gerhart, J. Formation and function of Spemann’s organizer. Annu. Rev. Cell Dev. Biol 13, 611–667 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Tada, S. et al. Characterization of mesendoderm: A diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Willems, E. & Leyns, L. Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires fibroblast growth factor activity. Differentiation 76, 745–759 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Chen, A. E., Borowiak, M., Sherwood, R. I., Kweudjeu, A. & Melton, D. A. Functional evaluation of ES cell-derived endodermal populations reveals differences between Nodal and Activin A-guided differentiation. Development 140, 675–686 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Asashima, M. et al. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch. Dev. Biol. 198, 330–335 (1990).

    CAS  Article  Google Scholar 

  • 8.

    Smith, J. C., Price, B. M. J., van Nimmen, K. & Huylebroeck, D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345, 729–731 (1990).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Green, J. B. A. & Smith, J. C. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394 (1990).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Ariizumi, T., Sawamura, K.-I., Uchiyama, H. & Asashima, M. Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int. J. Dev. Biol. 35, 407–414 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Shimizu, K. & Gurdon, J. B. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation. Proc. Natl. Acad. Sci. USA 96, 6791–6796 (1999).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Papin, C. & Smith, J. C. Gradual refinement of activin-induced thresholds requires protein synthesis. Dev. Biol. 217, 166–172 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Lee, S. Y. et al. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Differentiation 82, 99–107 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Ariizumi, T. & Asashima, M. Control of the embryonic body plan by activin during amphibian development. Zool. Sci. 12, 509–521 (1995).

    CAS  Article  Google Scholar 

  • 15.

    Fasterius, E. & Al-Khalili Szigyarto, C. Analysis of public RNA-sequencing data reveals biological consequences of genetic heterogeneity in cell line populations. Sci. Rep. 8, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Zhuang, J. et al. Comparison of multi-tissue aging between human and mouse. Sci. Rep. 9, 1–9 (2019).

    ADS  Google Scholar 

  • 17.

    van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 18.

    Amiri, A. et al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362, eaat6720. https://doi.org/10.1126/science.aat6720 (2018).

  • 19.

    Tan, M. H. et al. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res. 23, 201–216 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Mughal, B. B., Leemans, M., Spirhanzlova, P., Demeneix, B. & Fini, J. B. Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis. Sci. Rep. 8, 1–9 (2018).

    CAS  Article  Google Scholar 

  • 21.

    Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360, eaar5780. https://doi.org/10.1126/science.aar5780 (2018).

  • 22.

    Angerilli, A., Smialowski, P. & Rupp, R. A. W. The Xenopus animal cap transcriptome: Building a mucociliary epithelium. Nucleic Acids Res. 46, 8772–8787 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Kakebeen, A. D. et al. A temporally resolved transcriptome for developing “Keller” explants of the Xenopus laevis dorsal marginal zone. Dev. Dyn. https://doi.org/10.1101/2020.09.22.308312 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Ding, Y. et al. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev. Biol. 426, 176–187 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Taira, M., Jamrich, M., Good, P. J. & Dawid, I. B. The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 6, 356–366 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Takahashi, S., Esumi, E., Nabeshima, Y. I. & Asashima, M. Regulation of the Xmyf-5 and XmyoD expression pattern during early Xenopus development. Zool. Sci. 15, 231–238 (1998).

    CAS  Article  Google Scholar 

  • 29.

    Altmann, C. R. et al. The latent-TGFβ-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling. Dev. Biol. 248, 118–127 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Sander, V., Reversade, B. & de Robertis, E. M. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J. 26, 2955–2965 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Miyazaki, A. et al. mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and activin/nodal signaling in Xenopus ectodermal cells. PLoS ONE 7, e46630 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Rosa, F. M. Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57, 965–974 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Watabe, T. et al. Molecular mechanisms of Spemann’s organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9, 3038–3050 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Ryan, K., Garrett, N., Bourillot, P.-Y., Stennard, F. & Gurdon, J. B. The Xenopus Eomesodermin promoter and its concentration-dependent response to activin. Mech. Dev. 94, 133–146 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Kaufmann, E. et al. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1’ in Xenopus laevis embryos. EMBO J. 15, 6739–6749 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Osada, S. et al. Activin/Nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127, 2503–2514 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Kuliyev, E., Doherty, J. R. & Mead, P. E. Expression of Xenopus suppressor of cytokine signaling 3 (xSOCS3) is induced by epithelial wounding. Dev. Dyn. 233, 1123–1130 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Watanabe, M. et al. Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron. Dev. Dyn. 225, 448–456 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Charney, R. M., Paraiso, K. D., Blitz, I. L. & Cho, K. W. Y. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin. Cell Dev. Biol. 66, 12–24 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Umair, Z. et al. Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos. Anim. Cells Syst. (Seoul) 24, 359–370 (2020).

    CAS  Article  Google Scholar 

  • 41.

    Wallingford, J. B., Seufert, D. W., Virta, V. C. & Vize, P. D. p53 activity is essential for normal development in Xenopus. Curr. Biol. 7, 747–757 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Cordenonsi, M. et al. Links between Tumor Suppressors: p53 Is Required for TGF-Gene Responses by Cooperating with Smads. Cell 113, 301–314 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Takebayashi-Suzuki, K. et al. Interplay between the tumor suppressor p53 and TGFβ signaling shapes embryonic body axes in Xenopus. Development 130, 3929–3939 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Sudou, N., Yamamoto, S., Ogino, H. & Taira, M. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 139, 1651–1661 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Gupta, R., Wills, A., Ucar, D. & Baker, J. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus. Dev. Biol. 395, 38–49 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Chiu, W. T. et al. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 141, 4537–4547 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Jacquemyn, J. et al. The Torsin/ NEP1R1-CTDNEP1/ Lipin axis regulates nuclear envelope lipid metabolism for nuclear pore complex insertion. bioRxiv. Preprint at https://doi.org/10.1101/2020.07.05.188599 (2020).

  • 48.

    Hayata, T., Ezura, Y., Asashima, M., Nishinakamura, R. & Noda, M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-β signaling. J. Bone Miner. Res. 30, 318–329 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Satow, R., Kurisaki, A., Chan, T., Hamazaki, T. S. & Asashima, M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 11, 763–774 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Urrutia, H., Aleman, A. & Eivers, E. Drosophila Dullard functions as a Mad phosphatase to terminate BMP signaling. Sci. Rep. 6, 1–9 (2016).

    Article  CAS  Google Scholar 

  • 51.

    Pan, D. et al. The integral inner nuclear membrane protein MAN1 physically interacts with the R-smad proteins to repress signaling by the transforming growth factor-β superfamily of cytokines. J. Biol. Chem. 280, 15992–16001 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Osada, S., Ohmori, S. & Taira, M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130, 1783–1794 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Jukam, D., Shariati, S. A. M. & Skotheim, J. M. Zygotic genome activation in vertebrates. Dev. Cell 42, 316–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Gentsch, G. E., Owens, N. D. L. & Smith, J. C. The spatiotemporal control of zygotic genome activation. iScience 16, 485–498. https://doi.org/10.1016/j.isci.2019.06.013 (2019).

  • 55.

    Bright, A. R. et al. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. EMBO J. https://doi.org/10.15252/embj.2020104913 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Gallinari, P., di Marco, S., Jones, P., Pallaoro, M. & Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res. 17, 195–211 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Dunican, D. S., Ruzov, A., Hackett, J. A. & Meehan, R. R. xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function. Development 135, 1295–1302 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Wang, X. & Bhandari, R. K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14, 611–622 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Bajpai, A. et al. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 60.

    Forrai, A. et al. Absence of suppressor of cytokine signalling 3 reduces self-renewal and promotes differentiation in murine embryonic stem cells. Stem Cells 24, 604–614 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Li, Y. et al. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105, 635–637 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Erkenbrack, E. M. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Proc. Natl. Acad. Sci. USA 113, E7202–E7211 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Morley, R. H. et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc. Natl. Acad. Sci. USA 106, 3829–3834 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Koide, T., Hayata, T. & Cho, K. W. Y. Xenopus as a model system to study transcriptional regulatory networks. Proc. Natl. Acad. Sci. USA 102, 4943–4948 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Sladitschek, H. L. & Neveu, P. A. A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Mol. Syst. Biol. 15, e9043 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Sive, H. L., Grainger, R. M. & Harland, R. M. Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2000).

  • 67.

    Peng, H. B. Xenopus laevis: Practical uses in cell and molecular biology. Solutions and protocols. Methods Cell Biol. 36, 657–662 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus Laevis (Daudin): A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis (Garland Publishing, New York, 1956).

  • 69.

    Ariizumi, T., Michiue, T. & Asashima, M. In vitro induction of Xenopus embryonic organs using animal cap cells. Cold Spring Harb. Protoc. 2017, 982–987 (2017).

    Article  Google Scholar 

  • 70.

    Ohkuro, M. et al. Calreticulin and integrin alpha dissociation induces anti-inflammatory programming in animal models of inflammatory bowel disease. Nat. Commun. 9, 1982 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Mamada, H., Takahashi, N. & Taira, M. Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF. Dev. Biol. 327, 497–507 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 72.

    Ding, Y. et al. Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc. Natl. Acad. Sci. USA 114, E3081–E3090 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Ge, S. X., Son, E. W. & Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 19, 534 (2018).

    CAS  Article  Google Scholar 

  • 74.

    Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Margolin, A. A. et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, S7 (2006).

    Article  CAS  Google Scholar 

  • 76.

    Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Read original article here.