Transplantation of Wnt5a-modified NSCs promotes tissue
repair and locomotor functional recovery after spinal cord
injury
  • 1.

    Nat. Neurosci. 20, 637–647 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Ahuja, C. S. et al. Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80, S9–S22 (2017).

    Article  Google Scholar 

  • 3.

    Spinal Cord. 52, 110–116 (2014).

    CAS  Article  Google Scholar 

  • 4.

    Neurosurg. Focus 46, Artn E10 https://doi.org/10.3171/2018.12.Focus18602 (2019).

  • 5.

    Neural Regen. Res. 14, 69–71 (2019).

    Article  Google Scholar 

  • 6.

    Exp. Neurol. 229, 174–180 (2011).

    Article  Google Scholar 

  • 7.

    Saberi, H. et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J. Neurosurg.-Spine 15, 515–525 (2011).

    Article  Google Scholar 

  • 8.

    Ogawa, Y. et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69, 925–933 (2002).

    CAS  Article  Google Scholar 

  • 9.

    Lee, K. Z. et al. Intraspinal transplantation and modulation of donor neuron electrophysiological activity. Exp. Neurol. 251, 47–57 (2014).

    Article  Google Scholar 

  • 10.

    Dev. Dynam. 247, 75–84 (2018).

    Article  Google Scholar 

  • 11.

    Nat. Neurosci. 8, 259–260 (2005).

    CAS  Article  Google Scholar 

  • 12.

    Qu, Q. H. et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat. Cell Biol. 12, 31–U80 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Rodriguez, J. P. et al. Abrogation of beta-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J. Neurosci. 34, 10285–10297 (2014).

    Article  Google Scholar 

  • 14.

    Patel, M. et al. Prolonged neural stem cell maturation restores motor function in spinal cord-lesioned rats. Nat. Rev. Neurol. 13, https://doi.org/10.1038/nrneurol.2017.133 (2017).

  • 15.

    J. Neurosci. 30, 5998–6010 (2010).

    CAS  Article  Google Scholar 

  • 16.

    Jung, Y. S. et al. TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/beta-catenin signalling. Nat. Cell Biol. 20, 1421–142 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Li, M. W. et al. Transmembrane protein 170B is a novel breast tumorigenesis suppressor gene that inhibits the Wnt/beta-catenin pathway. Cell Death Dis. 9, ARTN 91 https://doi.org/10.1038/s41419-017-0128-y (2018).

  • 18.

    Bresson, L. et al. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/beta-catenin signaling. Development 145, doi:UNSP dev160382 https://doi.org/10.1242/dev.160382 (2018).

  • 19.

    Hirabayashi, Y. et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791–2801 (2004).

    CAS  Article  Google Scholar 

  • 20.

    Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12, 1097–U1096 (2009).

    CAS  Article  Google Scholar 

  • 21.

    Mol Brain 11, ARTN 39 https://doi.org/10.1186/s13041-018-0383-6 (2018).

  • 22.

    Stem Cells Int. 2015, Artn 178618 https://doi.org/10.1155/2015/178618 (2015).

  • 23.

    Blakely, B. D. et al. Ryk, a receptor regulating Wnt5a-mediated neurogenesis and axon morphogenesis of ventral midbrain dopaminergic neurons. Stem Cells Dev. 22, 2132–2144 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477 (2005).

    Article  Google Scholar 

  • 25.

    Front. Mol. Neurosci. 9, doi:ARTN 9 https://doi.org/10.3389/fnmol.2016.00009 (2016).

  • 26.

    Yang, J. N. et al. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms. Sci. Signal. 9, doi:ARTN ra76 https://doi.org/10.1126/scisignal.aaf0791 (2016).

  • 27.

    Chen, N. N. et al. Targeted inhibition of leucine-rich repeat and immunoglobulin domain-containing protein 1 in transplanted neural stem cells promotes neuronal differentiation and functional recovery in rats subjected to spinal cord injury. Crit. Care Med. 44, E146–E157 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Zhao, X. Y. et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci. Rep-Uk 8, doi:Artn 5447 https://doi.org/10.1038/S41598-018-23751-2 (2018).

  • 29.

    Li, X. et al. Wnt4-modified NSC transplantation promotes functional recovery after spinal cord injury. Faseb J. 34, 82–94 (2020).

    CAS  Article  Google Scholar 

  • 30.

    Kanekiyo, K. et al. Effects of multiple injection of bone marrow mononuclear cells on spinal cord injury of rats. J. Neurotraum. 34, 3003–3011 (2017).

    Article  Google Scholar 

  • 31.

    Wu, H. F. et al. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127. Biomaterials 34, 1686–1700 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Simard, J. M. et al. MRI evidence that glibenclamide reduces acute lesion expansion in a rat model of spinal cord injury. Spinal Cord. 51, 823–827 (2013).

    CAS  Article  Google Scholar 

  • 33.

    Spinal Cord. 37, 580–584 (1999).

    CAS  Article  Google Scholar 

  • 34.

    Mol. Biol. Cell 24, 421–432 (2013).

    CAS  Article  Google Scholar 

  • 35.

    World Neurosurg. 98, 438–443 (2017).

    Article  Google Scholar 

  • 36.

    Stem Cell Rev. Rep. 10, 44–59 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Birth Defects Res. C. 90, 284–296 (2010).

    CAS  Article  Google Scholar 

  • 38.

    Andersson, E. R. et al. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc Natl Acad. Sci. USA 110, E602–E610 (2013).

    CAS  Article  Google Scholar 

  • 39.

    Dev. Neurobiol. 74, 839–850 (2014).

    CAS  Article  Google Scholar 

  • 40.

    Lanoue, V. et al. The Wnt receptor Ryk is a negative regulator of mammalian dendrite morphogenesis. Sci. Rep-Uk 7, doi:Artn 5965 https://doi.org/10.1038/S41598-017-06140-Z (2017).

  • 41.

    Salinas, P. C. Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb. Perspect. Biol. 4, doi:ARTN a008003 https://doi.org/10.1101/cshperspect.a008003 (2012).

  • 42.

    Neural Regen. Res. 13, 43–52 (2018).

    Article  Google Scholar 

  • 43.

    Neurochem. Int. 112, 71–80 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Cell Signal 22, 717–727 (2010).

    CAS  Article  Google Scholar 

  • 45.

    Biochem. J. 457, 19–26 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Cell Death Dis. 8, doi:Artn E3108 https://doi.org/10.1038/Cddis.2017.504 (2017).

  • 47.

    Neurotherapeutics 8, 262–273 (2011).

    Article  Google Scholar 

  • 48.

    J. Physiol.-Lond. 594, 3539–3552 (2016).

    CAS  Article  Google Scholar 

  • Read original article here.