Umbilical cord blood-derived microglia-like cells to model
COVID-19 exposure
  • 1.

    Adams Waldorf, K. M. & McAdams, R. M. Influence of infection during pregnancy on fetal development. Reproduction 146, R151–R162 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Al-Haddad, B. J. S. et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry 76, 594–602 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Al-Haddad, B. J. S. et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 221, 549–562 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Bilbo, S. D., Block, C. L., Bolton, J. L., Hanamsagar, R. & Tran, P. K. Beyond infection—maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol. 299(Pt A), 241–251 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu Rev. Immunol. 29, 415–445 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Wilson, R. M. & Messaoudi, I. The impact of maternal obesity during pregnancy on offspring immunity. Mol. Cell Endocrinol. 418(Pt 2), 134–142 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Cordeiro, C. N., Tsimis, M. & Burd, I. Infections and brain development. Obstet. Gynecol. Surv. 70, 644–655 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Yockey, L. J., Lucas, C. & Iwasaki, A. Contributions of maternal and fetal antiviral immunity in congenital disease. Science 368, 608–612 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Zerbo, O. et al. Maternal infection during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 45, 4015–4025 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Mednick, S. A. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatry 45, 189 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Nunez, J. L., Alt, J. J. & McCarthy, M. M. A novel model for prenatal brain damage. II. Long-term deficits in hippocampal cell number and hippocampal-dependent behavior following neonatal GABAA receptor activation. Exp. Neurol. 181, 270–280 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Nakai, Y. et al. Apoptosis and microglial activation in influenza encephalopathy. Acta Neuropathol. 105, 233–239 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Smolders, S., Notter, T., Smolders, S. M. T., Rigo, J. M. & Brone, B. Controversies and prospects about microglia in maternal immune activationmodels for neurodevelopmental disorders. Brain Behav. Immun. 73, 51–65 (2018).

  • 14.

    Fernandez de Cossio, L., Guzman, A., van der Veldt, S. & Luheshi, G. N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 63, 88–98 (2017).

    PubMed  Article  Google Scholar 

  • 15.

    Zhao, Q. et al. Maternal immune activation-induced PPARgamma-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol. Dis. 125, 1–13 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 16.

    Edlow, A. G. et al. Placental macrophages, a window into fetal microglial function in maternal obesity. Int. J. Dev. Neurosci. 77, 60–68 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Lenz, K. M. & McCarthy, M. M. A starring role for microglia in brain sex differences. Neuroscientist 21, 306–321 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Bilimoria, P. M. & Stevens, B. Microglia function during brain development, new insights from animal models. Brain Res. 1617, 7–17 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Ginhoux, F. & Prinz, M. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7, a020537 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Gomez Perdiguero, E., Schulz, C. & Geissmann, F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61, 112–120 (2013).

    PubMed  Article  Google Scholar 

  • 26.

    Haley, M. J., Brough, D., Quintin, J. & Allan, S. M. Microglial priming as trained immunity in the brain. Neuroscience 405, 47–54 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).

  • 28.

    Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Sellgren, C. M. et al. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol. Psychiatry 22, 170–177 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Baum, M. L. et al. CUB and Sushi Multiple Domains 1 (CSMD1) opposes the complement cascade in neural tissues. Preprint at bioRxiv, https://doi.org/10.1101/2020.09.11.291427 (2020).

  • 31.

    Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Sarn, N. et al. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0681-0 (2020).

  • 33.

    Boyum, A. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. Suppl 5, 9–15 (1976).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Gray, E. G. & Whittaker, V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79–88 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Kamat, P. K., Kalani, A. & Tyagi, N. Method and validation of synaptosomal preparation for isolation of synaptic membrane proteins from rat brain. MethodsX 1, 102–107 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Tenreiro, P. et al. Comparison of simple sucrose and percoll based methodologies for synaptosome enrichment. Anal. Biochem. 517, 1–8 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Mohammadi, A., Esmaeilzadeh, E., Li, Y., Bosch, R. J. & Li, J. Z. SARS-CoV-2 detection in different respiratory sites: a systematic review and meta-analysis. EBioMedicine 59, 102903 (2020).

  • 39.

    Bergdolt, L. & Dunaevsky, A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog. Neurobiol. 175, 1–19 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Careaga, M., Murai, T. & Bauman, M. D. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol. Psychiatry 81, 391–401 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Haddad, F. L., Patel, S. V. & Schmid, S. Maternal immune activation by Poly I:C as a preclinical model for neurodevelopmental disorders: a focus on autism and schizophrenia. Neurosci. Biobehav. Rev. 113, 546–567 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Ito, H. T., Smith, S. E., Hsiao, E. & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun. 24, 930–941 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 26, 607–616 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Brown, A. S. & Meyer, U. Maternal immune activation and neuropsychiatric illness: a translational research perspective. Am. J. Psychiatry 175, 1073–1083 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Conway, F. & Brown, A. S. Maternal immune activation and related factors in the risk of offspring psychiatric disorders. Front. Psychiatry 10, 430 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Missault, S. et al. The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model. Brain Behav. Immun. 42, 138–146 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Liu, J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Kotlyar, A. M. et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 224, 35–53.e3 (2021).

  • 50.

    Flaherman, V. J. et al. Infant outcomes following maternal infection with SARS-CoV-2: first report from the PRIORITY Study. Clin. Infect. Dis. ciaa1411, https://doi.org/10.1093/cid/ciaa1411 (2020).

  • 51.

    Vivanti, A. J. et al. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 11, 3572 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Cai, Z., Pan, Z. L., Pang, Y., Evans, O. B. & Rhodes, P. G. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr. Res. 47, 64–72 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Urakubo, A., Jarskog, L. F., Lieberman, J. A. & Gilmore, J. H. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr. Res. 47, 27–36 (2001).

    CAS  PubMed  Article  Google Scholar 

  • Read original article here.