Wang, W. et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090 (2020).
Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).
Regen. Med. 12, 1–3 (2017).
Simon, H. G. et al. A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning. Dev. Camb. Engl. 124, 1355–1366 (1997).
Leigh, N. D. et al. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evol. Dev. 22, 297–311 (2020).
Natarajan, N. et al. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 137, 2152–2165 (2018).
Haller, S. et al. mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance. Cell Stem Cell 21, 806–818.e5 (2017).
Development 146, dev181016 (2019).
Vethamany-Globus, S. Hormone action in newt limb regeneration: insulin and endorphins. Biochem. Cell Biol. Biochim. Biol. Cell 65, 730–738 (1987).
J. Exp. Zool. 216, 395–397 (1981).
J. Exp. Zool. 187, 335–344 (1974).
Goss, R. J. Photoperiodic control of antler cycles in deer. I. Phase shift and frequency changes. J. Exp. Zool. 170, 311–324 (1969).
Dev. Biol. 65, 183–192 (1978).
Miao, Z.-F. et al. A dedicated evolutionarily conserved molecular network licenses differentiated cells to return to the cell cycle. Dev. Cell 55, 178–194.e7 (2020).
Wan, D. C. et al. Honey bee Royalactin unlocks conserved pluripotency pathway in mammals. Nat. Commun. 9, 5078 (2018).
Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).
Nat. Cell Biol. 15, 1123–1130 (2013).
Binger, K. J. et al. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).
Proc. Natl Acad. Sci. 110, 9415–9420 (2013).
Sci. Transl. Med. 6, 265sr6 (2014).
Curr. Opin. Nephrol. Hypertens. 19, 366–371 (2010).
Nat. Rev. Nephrol. 14, 231–245 (2018).
Hall, J. E. Historical perspective of the renin-angiotensin system. Mol. Biotechnol. 24, 27–39 (2003).
Cell Signal. 51, 34–46 (2018).
Circ. Res. 119, 91–112 (2016).
J. Crustac. Biol. 29, 293–301 (2009).
Wang, H. et al. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics 19, 421 (2018).
PLoS ONE 12, e0171870 (2017).
Yokoyama, H. et al. Skin regeneration of amphibians: a novel model for skin regeneration as adults. Dev. Growth Differ. 60, 316–325 (2018).
Genetics 141, 1583–1595 (1995).
J. Pathol. 105, 257–268 (1971).
J. Fish. Biol. 7, 173–182 (1975).
J. Exp. Biol. 206, 4539–4551 (2003).
Gillooly, J. F. Effects of size and temperature on metabolic arte. Science 293, 2248–2251 (2001).
J. Exp. Zool. Part Ecol. Genet. Physiol. 317, 248–258 (2012).
Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).
Int. J. Mol. Sci. 20, 2263 (2019).
Mol. Cell Endocrinol. 349, 13–19 (2012).
J. Exp. Zool. 202, 241–244 (1977).
J. Exp. Zool. 219, 111–114 (1982).
Wilhelm. Rouxs Arch. Dev. Biol. 193, 379–387 (1984).
Xue, Y. et al. Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice. Investig. Opthalmology Vis. Sci. 58, 1865 (2017).
Eur. J. Dermatol. EJD 28, 467–475 (2018).
Stokes, K. et al. The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol. Gastroenterol. Hepatol. 4, 95–114 (2017).
Hoyle, N. P. et al. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci. Transl. Med. 9, eaal2774 (2017).
Khapre, R. V. et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6, 48–57 (2014).
Zagni, C. et al. PTEN mediates activation of core clock protein BMAL1 and accumulation of epidermal stem cells. Stem Cell Rep. 9, 304–314 (2017).
Kowalska, E. et al. NONO couples the circadian clock to the cell cycle. Proc. Natl Acad. Sci. 110, 1592–1599 (2013).
Schauble, M. K. Seasonal variation of newt forelimb regeneration under controlled environmental conditions. J. Exp. Zool. 181, 281–286 (1972).
J. Exp. Zool. 182, 41–46 (1972).
Goss, R. J. Future directions in antler research. Anat. Rec. 241, 291–302 (1995).
Int. J. Biochem. Cell Biol. 56, 111–122 (2014).
Goss, R. J. Experimental investigation of morphogenesis in the growing antler. J. Embryol. Exp. Morphol. 9, 342–354 (1961).
Goss, R. J. Photoperiodic control of antler cycles in deer. V. Reversed seasons. J. Exp. Zool. 211, 101–105 (1980).
Reprod. Fertil. Dev. 6, 187 (1994).
Reproduction 71, 7–15 (1984).
Faucheux, C. et al. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev. Dyn. 231, 88–97 (2004).
Akhtar, R. W. et al. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). Gen. Comp. Endocrinol. 283, 113235 (2019).
J. Proteom. 195, 98–113 (2019).
Gudernatsch, J. F. Feeding experiments on tadpoles: I. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Arch. F.ür. Entwicklungsmechanik Org. 35, 457–483 (1912).
Gen. Comp. Endocrinol. 43, 443–450 (1981).
Anat. Rec. 206, 289–294 (1983).
Monaghan, J. R. et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity: Axolotl Metamorphosis reduces. Regeneration 1, 2–14 (2014).
Dent, J. N. Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J. Morphol. 110, 61–77 (1962).
Neural Regen. Res. 13, 599–608 (2018).
Gen. Comp. Endocrinol. 168, 209–219 (2010).
Marshall, L. N. et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc. Natl. Acad. Sci. 116, 3614–3623 (2019).
Wiley Interdiscip. Rev. Dev. Biol. 2, 291–300 (2013).
Ekmektzoglou, K. A. A concomitant review of the effects of diabetes mellitus and hypothyroidism in wound healing. World J. Gastroenterol. 12, 2721 (2006).
Foot Ankle Int. 32, 38–46 (2011).
PloS ONE 13, e0197981 (2018).
Exp. Pathol. (Jena.) 12, 129–136 (1976).
Endocrinology 145, 2357–2361 (2004).
Stress 3, 201–208 (2000).
Quax, R. A. et al. Glucocorticoid sensitivity in health and disease. Nat. Rev. Endocrinol. 9, 670–686 (2013).
Zool. Jena. Ger. 139, 125751 (2020).
Gen. Comp. Endocrinol. 216, 33–38 (2015).
Pianca, N. et al. Glucocorticoid Receptor ablation promotes cardiac regeneration by hampering cardiomyocyte terminal differentiation. https://doi.org/10.1101/2020.01.15.901249 (2020).
J. Mol. Cell Cardiol. 142, 126–134 (2020).
Raff, H. CORT, Cort, B, corticosterone, and now cortistatin: enough already! Endocrinology 157, 3307–3308 (2016).
Gen. Comp. Endocrinol. 181, 35–44 (2013).
Biol. Open 5, 1134–1141 (2016).
Brufani, M. et al. Novel locally active estrogens accelerate cutaneous wound healing-part 2. Sci. Rep. 7, 2510 (2017).
PLoS ONE 11, e0163560 (2016).
Campbell, L. et al. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J. Exp. Med. 207, 1825–1833 (2010).
J. Steroid Biochem. Mol. Biol. 191, 105375 (2019).
J. Vet. Sci. 17, 159 (2016).
Xu, K. et al. Effects of Bakuchiol on chondrocyte proliferation via the PI3K‐Akt and ERK1/2 pathways mediated by the estrogen receptor for promotion of the regeneration of knee articular cartilage defects. Cell Prolif. 52, e12666 (2019).
Batmunkh, B. et al. Estrogen accelerates cell proliferation through estrogen receptor α during rat liver regeneration after partial hepatectomy. Acta Histochem. Cytochem. 50, 39–48 (2017).
Kao, T.-L. et al. Estrogen receptors orchestrate cell growth and differentiation to facilitate liver regeneration. Theranostics 8, 2672–2682 (2018).
Clin. Exp. Gastroenterol. 12, 331–336 (2019).
Xu, S. et al. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J. Endocrinol. 245, 39–51 (2020).
Curr. Biol. 21, 1912–1917 (2011).
J. Clin. Invest. 110, 615–624 (2002).
Cell Immunol. 252, 57–67 (2008).
Climacteric 10, 276–288 (2007).
Mihai, M. C. et al. Mechanism of 17β-estradiol stimulated integration of human mesenchymal stem cells in heart tissue. J. Mol. Cell Cardiol. 133, 115–124 (2019).
Horng, H.-C. et al. Estrogen effects on wound healing. Int. J. Mol. Sci. 18, 2325 (2017).
Gen. Comp. Endocrinol. 138, 128–138 (2004).
Hopkins, P. M. Ecdysteroids and regeneration in the fiddler crab Uca pugilator. J. Exp. Zool. 252, 293–299 (1989).
Mol. Cell Endocrinol. 365, 249–259 (2013).
Genetics 200, 1219–1228 (2015).
PLoS Biol. 17, e3000149 (2019).
J. Endocrinol. 191, 1–8 (2006).
Lin, Y. et al. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complement. Altern. Med. 19, 175 (2019).
Diabetes Metab. Syndr. Obes. Targets Ther. 12, 1659–1665 (2019).
Compr. Physiol. 8, 351–369 (2017).
Cell Stem Cell 15, 154–168 (2014).
Onger, M. E. et al. Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J. Chem. Neuroanat. 81, 34–41 (2017).
Med. Sci. Monit. Basic Res. 19, 279–284 (2013).
Poeggeler, B. et al. Leptin and the skin: a new frontier. Exp. Dermatol. 19, 12–18 (2010).
Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016).
Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).
J. Clin. Invest. 106, 501–509 (2000).
Dev. Camb. Engl. 137, 871–879 (2010).
PloS ONE 6, e28372 (2011).
Huang, Y. et al. Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS ONE 8, e67266 (2013).
Diabetes Res. Clin. Pract. 78, 149–158 (2007).
J. Embryol. Exp. Morphol. 30, 415–426 (1973).
Wound Repair Regen. 18, 532–542 (2010).
Agostinone, J. et al. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 141, 1963–1980 (2018).
Azevedo, F. F. et al. Topical insulin modulates inflammatory and proliferative phases of burn-wound healing in diabetes-induced rats. Biol. Res. Nurs. 21, 473–484 (2019).
Ostomy Wound Manag. 62, 16–23 (2016).
Li, W. et al. Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf. B Biointerfaces 175, 436–444 (2019).
Wang, X. et al. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int. J. Nanomed. 13, 117–127 (2018).
Wang, X. et al. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv. 26, 1178–1190 (2019).
Science 336, 582–585 (2012).
Int. J. Dev. Biol. 48, 343–347 (2004).
Proc. Natl Acad. Sci. UsA 112, E2327–2336 (2015).
Genetics 204, 703–709 (2016).
Mirth, C. K. et al. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl Acad. Sci. Usa 111, 7018–7023 (2014).
J. Exp. Zool. 193, 353–360 (1975).
Kunkel, J. G. Cockroach molting. ii. the nature of regeneration-induced delay of molting hormone secretion. Biol. Bull. 153, 145–162 (1977).
Biol. Rev. Camb. Philos. Soc. 82, 481–510 (2007).
Hamada, Y. et al. Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142, 2916–2927 (2015).
Brinkmann, V. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).
Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7, e32366 (2012).
Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).
Xuan, Y. H. et al. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS ONE 9, e108182 (2014).
J. Dermatol. Sci. 84, 121–127 (2016).
Kido, D. et al. Impact of diabetes on gingival wound healing via oxidative stress. PLoS ONE 12, e0189601 (2017).
Tamura, M. et al. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney Int. 63, 722–731 (2003).
Science 324, 1029–1033 (2009).
BioEssays 36, 27–33 (2014).
Development 147, dev181636 (2020).
Leave A Comment
You must be logged in to post a comment.