A cross-species analysis of systemic mediators of repair and complex tissue regeneration
  • 1.

    Wang, W. et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Regen. Med. 12, 1–3 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Simon, H. G. et al. A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning. Dev. Camb. Engl. 124, 1355–1366 (1997).

    CAS  Google Scholar 

  • 5.

    Leigh, N. D. et al. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evol. Dev. 22, 297–311 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Natarajan, N. et al. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 137, 2152–2165 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Haller, S. et al. mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance. Cell Stem Cell 21, 806–818.e5 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Development 146, dev181016 (2019).

  • 9.

    Vethamany-Globus, S. Hormone action in newt limb regeneration: insulin and endorphins. Biochem. Cell Biol. Biochim. Biol. Cell 65, 730–738 (1987).

    CAS  Article  Google Scholar 

  • 10.

    J. Exp. Zool. 216, 395–397 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    J. Exp. Zool. 187, 335–344 (1974).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Goss, R. J. Photoperiodic control of antler cycles in deer. I. Phase shift and frequency changes. J. Exp. Zool. 170, 311–324 (1969).

    Article  Google Scholar 

  • 13.

    Dev. Biol. 65, 183–192 (1978).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Miao, Z.-F. et al. A dedicated evolutionarily conserved molecular network licenses differentiated cells to return to the cell cycle. Dev. Cell 55, 178–194.e7 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Wan, D. C. et al. Honey bee Royalactin unlocks conserved pluripotency pathway in mammals. Nat. Commun. 9, 5078 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Nat. Cell Biol. 15, 1123–1130 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Binger, K. J. et al. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Proc. Natl Acad. Sci. 110, 9415–9420 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Sci. Transl. Med. 6, 265sr6 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Curr. Opin. Nephrol. Hypertens. 19, 366–371 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Nat. Rev. Nephrol. 14, 231–245 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Hall, J. E. Historical perspective of the renin-angiotensin system. Mol. Biotechnol. 24, 27–39 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Cell Signal. 51, 34–46 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Circ. Res. 119, 91–112 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    J. Crustac. Biol. 29, 293–301 (2009).

    Article  Google Scholar 

  • 27.

    Wang, H. et al. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics 19, 421 (2018).

  • 28.

    PLoS ONE 12, e0171870 (2017).

  • 29.

    Yokoyama, H. et al. Skin regeneration of amphibians: a novel model for skin regeneration as adults. Dev. Growth Differ. 60, 316–325 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Genetics 141, 1583–1595 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    J. Pathol. 105, 257–268 (1971).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    J. Fish. Biol. 7, 173–182 (1975).

    Article  Google Scholar 

  • 33.

    J. Exp. Biol. 206, 4539–4551 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Gillooly, J. F. Effects of size and temperature on metabolic arte. Science 293, 2248–2251 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    J. Exp. Zool. Part Ecol. Genet. Physiol. 317, 248–258 (2012).

    Article  Google Scholar 

  • 36.

    Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Int. J. Mol. Sci. 20, 2263 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • 38.

    Mol. Cell Endocrinol. 349, 13–19 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    J. Exp. Zool. 202, 241–244 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    J. Exp. Zool. 219, 111–114 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Wilhelm. Rouxs Arch. Dev. Biol. 193, 379–387 (1984).

    CAS  Article  Google Scholar 

  • 42.

    Xue, Y. et al. Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice. Investig. Opthalmology Vis. Sci. 58, 1865 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Eur. J. Dermatol. EJD 28, 467–475 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Stokes, K. et al. The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol. Gastroenterol. Hepatol. 4, 95–114 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Hoyle, N. P. et al. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci. Transl. Med. 9, eaal2774 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Khapre, R. V. et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6, 48–57 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Zagni, C. et al. PTEN mediates activation of core clock protein BMAL1 and accumulation of epidermal stem cells. Stem Cell Rep. 9, 304–314 (2017).

    CAS  Article  Google Scholar 

  • 48.

    Kowalska, E. et al. NONO couples the circadian clock to the cell cycle. Proc. Natl Acad. Sci. 110, 1592–1599 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Schauble, M. K. Seasonal variation of newt forelimb regeneration under controlled environmental conditions. J. Exp. Zool. 181, 281–286 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    J. Exp. Zool. 182, 41–46 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Goss, R. J. Future directions in antler research. Anat. Rec. 241, 291–302 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Int. J. Biochem. Cell Biol. 56, 111–122 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 53.

    Goss, R. J. Experimental investigation of morphogenesis in the growing antler. J. Embryol. Exp. Morphol. 9, 342–354 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Goss, R. J. Photoperiodic control of antler cycles in deer. V. Reversed seasons. J. Exp. Zool. 211, 101–105 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Reprod. Fertil. Dev. 6, 187 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Reproduction 71, 7–15 (1984).

    CAS  Article  Google Scholar 

  • 57.

    Faucheux, C. et al. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev. Dyn. 231, 88–97 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Akhtar, R. W. et al. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). Gen. Comp. Endocrinol. 283, 113235 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    J. Proteom. 195, 98–113 (2019).

    CAS  Article  Google Scholar 

  • 60.

    Gudernatsch, J. F. Feeding experiments on tadpoles: I. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Arch. F.ür. Entwicklungsmechanik Org. 35, 457–483 (1912).

    Article  Google Scholar 

  • 61.

    Gen. Comp. Endocrinol. 43, 443–450 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Anat. Rec. 206, 289–294 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Monaghan, J. R. et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity: Axolotl Metamorphosis reduces. Regeneration 1, 2–14 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Dent, J. N. Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J. Morphol. 110, 61–77 (1962).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Neural Regen. Res. 13, 599–608 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Gen. Comp. Endocrinol. 168, 209–219 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Marshall, L. N. et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc. Natl. Acad. Sci. 116, 3614–3623 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Wiley Interdiscip. Rev. Dev. Biol. 2, 291–300 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Ekmektzoglou, K. A. A concomitant review of the effects of diabetes mellitus and hypothyroidism in wound healing. World J. Gastroenterol. 12, 2721 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Foot Ankle Int. 32, 38–46 (2011).

    PubMed  Article  Google Scholar 

  • 71.

    PloS ONE 13, e0197981 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Exp. Pathol. (Jena.) 12, 129–136 (1976).

    CAS  Google Scholar 

  • 73.

    Endocrinology 145, 2357–2361 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Stress 3, 201–208 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Quax, R. A. et al. Glucocorticoid sensitivity in health and disease. Nat. Rev. Endocrinol. 9, 670–686 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Zool. Jena. Ger. 139, 125751 (2020).

    Google Scholar 

  • 77.

    Gen. Comp. Endocrinol. 216, 33–38 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Pianca, N. et al. Glucocorticoid Receptor ablation promotes cardiac regeneration by hampering cardiomyocyte terminal differentiation. https://doi.org/10.1101/2020.01.15.901249 (2020).

  • 79.

    J. Mol. Cell Cardiol. 142, 126–134 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Raff, H. CORT, Cort, B, corticosterone, and now cortistatin: enough already! Endocrinology 157, 3307–3308 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 81.

    Gen. Comp. Endocrinol. 181, 35–44 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Biol. Open 5, 1134–1141 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Brufani, M. et al. Novel locally active estrogens accelerate cutaneous wound healing-part 2. Sci. Rep. 7, 2510 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 84.

    PLoS ONE 11, e0163560 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 85.

    Campbell, L. et al. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J. Exp. Med. 207, 1825–1833 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    J. Steroid Biochem. Mol. Biol. 191, 105375 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 87.

    J. Vet. Sci. 17, 159 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Xu, K. et al. Effects of Bakuchiol on chondrocyte proliferation via the PI3K‐Akt and ERK1/2 pathways mediated by the estrogen receptor for promotion of the regeneration of knee articular cartilage defects. Cell Prolif. 52, e12666 (2019).

  • 89.

    Batmunkh, B. et al. Estrogen accelerates cell proliferation through estrogen receptor α during rat liver regeneration after partial hepatectomy. Acta Histochem. Cytochem. 50, 39–48 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Kao, T.-L. et al. Estrogen receptors orchestrate cell growth and differentiation to facilitate liver regeneration. Theranostics 8, 2672–2682 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Clin. Exp. Gastroenterol. 12, 331–336 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Xu, S. et al. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J. Endocrinol. 245, 39–51 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Curr. Biol. 21, 1912–1917 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    J. Clin. Invest. 110, 615–624 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 95.

    Cell Immunol. 252, 57–67 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Climacteric 10, 276–288 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 97.

    Mihai, M. C. et al. Mechanism of 17β-estradiol stimulated integration of human mesenchymal stem cells in heart tissue. J. Mol. Cell Cardiol. 133, 115–124 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 98.

    Horng, H.-C. et al. Estrogen effects on wound healing. Int. J. Mol. Sci. 18, 2325 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 99.

    Gen. Comp. Endocrinol. 138, 128–138 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 100.

    Hopkins, P. M. Ecdysteroids and regeneration in the fiddler crab Uca pugilator. J. Exp. Zool. 252, 293–299 (1989).

    CAS  Article  Google Scholar 

  • 101.

    Mol. Cell Endocrinol. 365, 249–259 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Genetics 200, 1219–1228 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 103.

    PLoS Biol. 17, e3000149 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 104.

    J. Endocrinol. 191, 1–8 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Lin, Y. et al. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complement. Altern. Med. 19, 175 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 106.

    Metab. Syndr. Obes. Targets Ther. 12, 1659–1665 (2019).

    CAS  Article  Google Scholar 

  • 107.

    Compr. Physiol. 8, 351–369 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Cell Stem Cell 15, 154–168 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 109.

    Onger, M. E. et al. Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J. Chem. Neuroanat. 81, 34–41 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 110.

    Med. Sci. Monit. Basic Res. 19, 279–284 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 111.

    Poeggeler, B. et al. Leptin and the skin: a new frontier. Exp. Dermatol. 19, 12–18 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 112.

    Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    J. Clin. Invest. 106, 501–509 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Dev. Camb. Engl. 137, 871–879 (2010).

    CAS  Google Scholar 

  • 116.

    PloS ONE 6, e28372 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 117.

    Huang, Y. et al. Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS ONE 8, e67266 (2013).

  • 118.

    Res. Clin. Pract. 78, 149–158 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 119.

    J. Embryol. Exp. Morphol. 30, 415–426 (1973).

    CAS  PubMed  Google Scholar 

  • 120.

    Wound Repair Regen. 18, 532–542 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 121.

    Agostinone, J. et al. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 141, 1963–1980 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 122.

    Azevedo, F. F. et al. Topical insulin modulates inflammatory and proliferative phases of burn-wound healing in diabetes-induced rats. Biol. Res. Nurs. 21, 473–484 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 123.

    Ostomy Wound Manag. 62, 16–23 (2016).

    Google Scholar 

  • 124.

    Li, W. et al. Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf. B Biointerfaces 175, 436–444 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 125.

    Wang, X. et al. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int. J. Nanomed. 13, 117–127 (2018).

    CAS  Article  Google Scholar 

  • 126.

    Wang, X. et al. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv. 26, 1178–1190 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Science 336, 582–585 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 128.

    Int. J. Dev. Biol. 48, 343–347 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 129.

    Proc. Natl Acad. Sci. UsA 112, E2327–2336 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 130.

    Genetics 204, 703–709 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 131.

    Mirth, C. K. et al. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl Acad. Sci. Usa 111, 7018–7023 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 132.

    J. Exp. Zool. 193, 353–360 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 133.

    Kunkel, J. G. Cockroach molting. ii. the nature of regeneration-induced delay of molting hormone secretion. Biol. Bull. 153, 145–162 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 134.

    Biol. Rev. Camb. Philos. Soc. 82, 481–510 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 135.

    Hamada, Y. et al. Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142, 2916–2927 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 136.

    Brinkmann, V. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 137.

    Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7, e32366 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 138.

    Wong, S. L. et al. primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 139.

    Xuan, Y. H. et al. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS ONE 9, e108182 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 140.

    J. Dermatol. Sci. 84, 121–127 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 141.

    Kido, D. et al. Impact of diabetes on gingival wound healing via oxidative stress. PLoS ONE 12, e0189601 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 142.

    Tamura, M. et al. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney Int. 63, 722–731 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 143.

    Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  • 144.

    BioEssays 36, 27–33 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 145.

    Development 147, dev181636 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Read original article here.