Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration
  • 1.

    Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    JAMA Surg. 152, 467–474 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Geneva Declaration Secretariat. Global Burden of Armed Violence. http://www.genevadeclaration.org/measurability/global-burden-of-armed-violence/global-burden-of-armed-violence-2015.html (Geneva Declaration Secretariat, 2015).

  • 4.

    Geneva Declaration Secretariat. Global Burden of Armed Violence. Geneva Declaration, 1–174 (Geneva Declaration Secretariat, 2008).

  • 5.

    Injury 36, 407–411 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    J. Trauma Acute Care Surg. 73, 3–12 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    NPJ Regen. Med. 3, 13 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Injury 42, 488–491 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    J. Am. Acad. Orthop. Surg. 8, 21–36 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Billroth, T. Untersuchungen über die Entwicklung der Blutgefässe. Berlin (University and Regional Library of Tyrol, 1856).

  • 11.

    Brunschwig, H. Dis ist das buch der Cirurgia Hantwirchung der wund artzny. Strassburg; Grüninger (1947).

  • 12.

    Hunter, J. A. A treatise on the blood, inflammation, and gun-shot wounds. Most readily available (posthumous) edition published (John Richardson, London, 1794).

  • 13.

    Flint, J. M. The blood supply, angiogenesis, organogenesis, reticulum and histology of the adrenal. Johns. Hopkins Hosp. Rec. 4, 154–229 (1900).

    Google Scholar 

  • 14.

    Travers B: The Physiology of Inflammation and the Healing Process. Surgeon Extraodinary to the Queen etc. London, Highley. 1843.

  • 15.

    Am. J. Anat. 57, 385–437 (1935).

    Article  Google Scholar 

  • 16.

    Cliff, W. J. Observations on healing tissue: a combined light and electron microscopic investigation. Philos. Trans. R. Soc., Lond. 246, 305–325 (1963).

    Google Scholar 

  • 17.

    Schoefl, G. I. Studies on inflammation. III. Growing capillaries: their structure and permeability. Virchows Arch. A PathoZ. Anat. Histol. 337, 97–141 (1963).

    CAS  Article  Google Scholar 

  • 18.

    Studitsky, A. N. Free auto- and homografts of muscle tissue in experiments on animals. Ann. N, Y, Acad. Sci 120, 789–801 (1964).

    CAS  Article  Google Scholar 

  • 19.

    Anaesthesia 68, 30–39 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Maiden, N. Historical overview of wound ballistics research. Forensic Sci. Med. Pathol. 5, 85–89 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Stefanopoulos, P. K. et al. Wound ballistics of military rifle bullets: an update on controversial issues and associated misconceptions. J. Trauma Acute Care Surg. 87, 690–698 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Fackler, M. L. Gunshot wound review. Ann. Emerg. Med. 28, 194–203 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 144–159 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Kotwal, R. S. et al. The effect of a golden hour policy on the morbidity and mortality of combat casualties. JAMA Surg. 151, 15–24 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 25.

    Harmsen, A. M. et al. The influence of prehospital time on trauma patients outcome: a systematic review. Injury 46, 602–609 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Qazi, T. H. et al. Cell therapy to improve regeneration of skeletal muscle injuries. J. Cachexia Sarcopenia Muscle 10, 501–516 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Cells 9, https://doi.org/10.3390/cells9051297 (2020).

  • 28.

    Hardy, D. et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11, e0147198 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Physiol. Rev. 93, 23–67 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Cell Mol. Life Sci. 76, 2559–2570 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Tidball, J. G. Inflammatory cell response to acute muscle injury. Med. Sci. Sports Exerc. 27, 1022–1032 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    EMBO Rep. 14, 1062–1072 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Stem Cells Int. 2019, 4761427 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Development 139, 2845–2856 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Stilhano, R. S. et al. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS ONE 12, e0186719 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Miyabara, E. H. et al. Mammalian target of rapamycin complex 1 is involved in differentiation of regenerating myofibers in vivo. Muscle Nerve 42, 778–787 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    J. Trauma 25, 138–144 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Proc. R. Soc. Med. 56, 461–468 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    J. Trauma 22, 382–387 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Acta Chir. Scand. 149, 729–734 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Acta Chir. Scand. Suppl. 508, 257–259 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Hasselgren, P. O. et al. Leucine incorporation into skeletal muscle proteins in vitro and protein synthesis by isolated ribosomes from skeletal muscle around a high velocity missile injury. Acta Chir. Scand. Suppl. 508, 337–344 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Acta Chir. Scand. 149, 453–458 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Microcirc. Endothelium Lymphatics 2, 293–311 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Nat. Rev. Mol. Cell Biol. 17, 267–279 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Acta Physiol. (Oxf.) 211, 617–633 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Development 138, 3625–3637 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Development 138, 3639–3646 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Cell Stem Cell 23, 653–664 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    npj Regen. Med. 3, 24 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Cell Stem Cell 27, 532–556 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Bioengineering (Basel) 7, https://doi.org/10.3390/bioengineering7030076 (2020).

  • 55.

    Genes Dev. 11, 2040–2051 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Cell Tissue Res. 306, 129–141 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Am. J. Physiol. Cell Physiol. 278, C174–C181 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Cell Metab. 7, 33–44 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    J. Clin. Invest. 97, 1111–1116 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Cell Mol. Life Sci. 70, 4117–4130 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Gayraud-Morel, B. et al. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J. Cell Sci. 125, 1738–1749 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, https://doi.org/10.1242/dev.174177 (2019).

  • 63.

    Open Biol. 10, 200048 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Sci. Signal. 6, re2 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Bjornson, C. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Mourikis, P. et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243–252 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Baghdadi, M. B. et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557, 714–718 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Baghdadi, M. B. et al. Notch-induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23, 859–868 e855 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510, 393–396 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Cell Rep. 19, 479–486 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Zhang, P. et al. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. Biochem. Biophys. Res. Commun. 463, 102–108 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Rion, N. et al. mTORC2 affects the maintenance of the muscle stem cell pool. Skelet. Muscle 9, 30 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Dev. Biol. 433, 200–209 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Bioengineering (Basel) 7, https://doi.org/10.3390/bioengineering7030085 (2020).

  • 75.

    J. Am. Acad. Orthop. Surg. 19, S35–S37 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Greising, S. M. et al. Unwavering pathobiology of volumetric muscle loss injury. Sci. Rep. 7, 13179 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Aguilar, C. A. et al. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 4, 33 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Nat. Rev. Drug Discov. 14, 58–74 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    FEBS J. 280, 4294–4314 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21134759 (2020).

  • 81.

    Int. J. Mol Sci. 21, https://doi.org/10.3390/ijms21134681 (2020).

  • 82.

    J. Physiol. Sci. 70, 40 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Cell Mol. Life Sci, https://doi.org/10.1007/s00018-020-03662-0 (2020).

  • 84.

    Sebastian, D. et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 35, 1677–1693 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Favaro, G. et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat. Commun. 10, 2576 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 86.

    Tezze, C. et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 25, 1374–1389 e1376 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Segales, J. et al. Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nat. Commun. 11, 189 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Nat. Rev. Nephrol. 10, 504–516 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Stitt, T. N. et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395–403 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Lord, J. M. et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 384, 1455–1465 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Sanchez, A. M. et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell Biochem. 113, 695–710 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Int. J. Sports Med. 41, 994–1008 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Matecki, S. et al. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc. Natl Acad. Sci. USA 113, 9069–9074 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Evans, K. N. et al. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J. Orthop. Trauma 26, e204–e213 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Friedrich, O. et al. The sick and the weak: neuropathies/myopathies in the critically ill. Physiol. Rev. 95, 1025–1109 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Kirk, S. et al. Myostatin regulation during skeletal muscle regeneration. J. Cell. Physiol. 184, 356–363 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Siriett, V. et al. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol. Ther. 15, 1463–1470 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 98.

    J. Physiol. 597, 1259–1270 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99.

    Free Radic. Biol. Med. 98, 208–217 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Dridi, H. et al. Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation. Free Radic. Biol. Med. 146, 383–391 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 101.

    Am. J. Physiol. Lung Cell Mol. Physiol. 290, L127–L135 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Am. J. Physiol. Circ. Physiol. 310, H326–H336 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Cytokine Growth Factor Rev. 25, 473–482 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Oncol. Lett. 16, 687–702, (2018).

  • 105.

    Hoier, B. et al. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J. Physiol. 590, 595–606 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Egginton, S. Invited Review: activity-induced angiogenesis. Pflug. Arch. Eur. J. Physiol. 457, 693–977 (2009).

    Article  CAS  Google Scholar 

  • 107.

  • 108.

    BMC Sports Sci. Med. Rehabil. 6, 41 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 109.

    Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Tawfik, V. L. et al. Angiotensin receptor blockade mimics the effect of exercise on recovery after orthopaedic trauma by decreasing pain and improving muscle regeneration. J. Physiol. 598, 317–329 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 111.

    N. Engl. J. Med. 377, 1300–1301 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    J. Clin. Invest. 120, 11–19 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Garg, K. et al. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 114.

    Corona, B. T. et al. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761–C775 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    NPJ Regen. Med. 5, 10 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Ikemoto, M. et al. Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol. Ther. 15, 2178–2185 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 117.

    J. R. Soc. Interface 15, https://doi.org/10.1098/rsif.2017.0380rsif.2017.0380[pii] (2018).

  • 118.

    Quarta, M. et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34, 752–759 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 119.

    Quarta, M. et al. Biomechanics show stem cell necessity for effective treatment of volumetric muscle loss using bioengineered constructs. npj Regen. Med. 3, 18 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 120.

    Cell Stem Cell 18, 243–252 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Zhu, M. et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat. Commun. 10, 4620 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 122.

    Brett, J. O. et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat. Metab. 2, 307–317 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 123.

    Cells 8, https://doi.org/10.3390/cells8091066cells8091066[pii] (2019).

  • 124.

    Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra258 (2014).

    Article  CAS  Google Scholar 

  • 125.

    Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen. Med. 1, 16008 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 126.

    Am. J. Sports Med. 36, 1548–1554 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 127.

    J. Appl. Physiol. (1985) 117, 1120–1131 (2014).

    CAS  Article  Google Scholar 

  • 128.

    Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 129.

    Garcia-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 130.

    Ho, A. T. V. et al. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc. Natl Acad. Sci. USA 114, 6675–6684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 131.

    McArthur, S. et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J. Clin. Invest. 130, 1156–1167 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 132.

    Baht, G. S. et al. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat. Metab. 2, 278–289 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 133.

    Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 134.

    Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 135.

    Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 136.

    Urciuolo, A. et al. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Sci. Rep. 8, 8398 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 137.

    Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 138.

    Bar-Nur, O. et al. Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep. 10, 1505–1521 (2018).

    CAS  Article  Google Scholar 

  • 139.

    J. Cachexia Sarcopenia Muscle 6, 197–207 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 140.

    Adams, V. et al. Small-molecule-mediated chemical knock-down of MuRF1/MuRF2 and attenuation of diaphragm dysfunction in chronic heart failure. J. Cachexia Sarcopenia Muscle 10, 1102–1115 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 141.

    Bowen, T. S. et al. Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J. Cachexia Sarcopenia Muscle 8, 939–953 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 142.

    Adams, V. et al. Small-molecule chemical knockdown of MuRF1 in melanoma bearing mice attenuates tumor cachexia associated myopathy. Cells 9, https://doi.org/10.3390/cells9102272 (2020).

  • 143.

    Zhang, L. et al. Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18, 368–379 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 144.

    Camporez, J. P. et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl Acad. Sci. USA 113, 2212–2217 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 145.

    Hammers, D. W. et al. Disease-modifying effects of orally bioavailable NF-kappaB inhibitors in dystrophin-deficient muscle. JCI Insight 1, e90341 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 146.

    Silva, W. J. et al. miR-29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy-related genes. Acta Physiol. (Oxf.) 226, e13278 (2019).

    PubMed Central  Article  CAS  Google Scholar 

  • 147.

    Callis, T. E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 148.

    Wada, S. et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 286, 38456–38465 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 149.

    Wang, B. et al. MicroRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. J. Am. Soc. Nephrology: JASN 28, 2631–2640 (2017).

    CAS  Article  Google Scholar 

  • 150.

    Xu, J. et al. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82, 401–411 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 151.

    Southern, W. M. et al. PGC-1alpha overexpression partially rescues impaired oxidative and contractile pathophysiology following volumetric muscle loss injury. Sci. Rep. 9, 4079 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 152.

    J. Physiol. 592, 4575–4589 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 153.

    J. Appl. Physiol. (1985) 128, 463–472 (2020).

    CAS  Article  Google Scholar 

  • 154.

    Rossman, M. J. et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71, 1056–1063 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 155.

    Vinke, P. et al. Anti-inflammatory nutrition with high protein attenuates cardiac and skeletal muscle alterations in a pulmonary arterial hypertension model. Sci. Rep. 9, 10160 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 156.

    Wosczyna, M. N. et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep. 27, 2029–2035 e2025 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 157.

    Madaro, L. et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat. Cell Biol. 20, 917–927 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 158.

    Blaauw, B. et al. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J. 23, 3896–3905 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 159.

    Hornberger, T. A. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int. J. Biochem. Cell Biol. 43, 1267–1276 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 160.

    J. Appl. Physiol. (1985) 128, 286–295 (2020).

    PubMed Central  Article  CAS  Google Scholar 

  • 161.

    Pereira, M. G. et al. Leucine supplementation accelerates connective tissue repair of injured tibialis anterior muscle. Nutrients 6, 3981–4001 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 162.

    Pereira, M. G. et al. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS ONE 9, e85283 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 163.

    Fujita, S. et al. Nutrient signalling in the regulation of human muscle protein synthesis. J. Physiol. 582, 813–823 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 164.

    Swist, S. et al. Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nat. Commun. 11, 4479 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 165.

    van der Pijl, R. et al. Titin-based mechanosensing modulates muscle hypertrophy. J. Cachexia Sarcopenia Muscle 9, 947–961 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 166.

    Hu, W. et al. Debriding effect of bromelain on firearm wounds in pigs. J. Trauma 71, 966–972 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 167.

    Cardiol. Rev. 17, 115–120 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 168.

    Microcirculation 18, 316–330 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 169.

    Patel, A. S. et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Mol. Med. 5, 858–869 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 170.

    Cardiovasc. Res. 49, 634–646 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 171.

    Hoier, B. et al. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease. J. Appl. Physiol. (1985) 115, 1777–1787 (2013).

    CAS  Article  Google Scholar 

  • 172.

    Lotfi, S. et al. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 227, 1–8 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 173.

    Salmons, S. The adaptive response of skeletal muscle: what is the evidence? Muscle Nerve 57, 531–541 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 174.

    Mayne, C. N. et al. Correlates of fatigue resistance in canine skeletal muscle stimulated electrically for up to one year. Am. J. Physiol. 261, C259–C270 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 175.

    Physiol. Rev. 72, 369–417 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 176.

    Front. Bioeng. Biotechnol. 6, 56 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 177.

    Nakayama, K. H. et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun. Biol. 2, 170 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 178.

    Inflamm. Regen. 38, 26 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 179.

    Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397–1409 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 180.

    J. Physiol. 597, 2127–2128 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 181.

    Ann. Intern. Med. 160, 858–860 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 182.

    Monuteaux, M. C. Association of increased safe household firearm storage with firearm suicide and unintentional death among US youths. JAMA Pediatr. 173, 675–662 (2019).

    Google Scholar 

  • Read original article here.