Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization
  • 1.

    Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17:573–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Forristal CE, Nowlan B, Jacobsen RN, Barbier V, Walkinshaw G, Walkley CR, et al. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. . 2015;29:1366–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Hatzfeld J, Li ML, Brown EL, Sookdeo H, Levesque JP, O’Toole T, et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med. 1991;174:925–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20:1321–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood. 2005;106:86–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Yao L, Setiadi H, Xia L, Laszik Z, Taylor FB, McEver RP. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood. 1999;94:3820–8.

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood. 2003;102:3154–62.

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Minehata K, Takeuchi M, Hirabayashi Y, Inoue T, Donovan PJ, Tanaka M, et al. Oncostatin M maintains the hematopoietic microenvironment and retains hematopoietic progenitors in the bone marrow. Int J Hematol. 2006;84:319–27.

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. 2010;120:582–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Sims NA, Quinn JM. Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep. 2014;3:527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, et al. Oncostatin M, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185:765–75.

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight. 2017;2:e96034.

    PubMed Central  Article  PubMed  Google Scholar 

  • 18.

    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Kaur S, Raggatt LJ, Batoon L, Hume DA, Levesque J-P, Pettit AR. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol. 2017;61:12–21.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Levesque JP, Summers KM, Millard SM, Bisht K, Winkler IG, Pettit AR. Role of macrophages and phagocytes in orchestrating normal and pathological haematopoietic niches. Exp Hematol. 2021;100:12–31.

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Modur V, Feldhaus MJ, Weyrich AS, Jicha DL, Prescott SM, Zimmerman GA, et al. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest. 1997;100:158–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Levesque JP, Helwani FM, Winkler IG. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. . 2010;24:1979–92.

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Tay J, Levesque J-P, Winkler IG. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol. 2017;105:129–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol. 2017;105:118–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Pelus LM, Broxmeyer HE. Peripheral blood stem cell mobilization: a look ahead. Curr Stem Cell Rep. 2018;4:273–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Levesque JP, Winkler IG. Mobilization of hematopoietic stem cells: state of the art. Curr Opin Organ Transpl. 2008;13:53–8.

    Article  Google Scholar 

  • 28.

    To LB, Levesque J-P, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118:4530–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, Inlay MA, et al. Gene expression commons: An open platform for absolute gene expression profiling. PLoS ONE. 2012;7:e40321.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Choi J, Baldwin TM, Wong M, Bolden JE, Fairfax KA, Lucas EC, et al. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 2018;47:D780–D5.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 31.

    Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol. 2002;30:440–9.

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT /CXCL2Δ4. Blood. 2004;103:110–9.

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Brolund L, Küster A, Korr S, Vogt M, Müller-Newen G. A receptor fusion protein for the inhibition of murine oncostatin M. BMC Biotechnol. 2011;11:3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J, et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells. 2007;25:3093–100.

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Nowlan B, Futrega K, Brunck ME, Walkinshaw G, Flippin LE, Doran MR, et al. HIF-1α-stabilizing agent FG-4497 rescues human CD34+ cell mobilization in response to G-CSF in immunodeficient mice. Exp Hematol. 2017;52:50–5.

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Nowlan B, Williams ED, Doran MR, Levesque J-P. CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains. Haematologica. 2020;105:71–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569:222–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood. 2006;107:2243–51.

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Winkler IG, Barbier V, Wadley R, Zannettino ACW, Williams S, Levesque J-P. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116:375–85.

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Pietras EM, Reynaud D, Kang Y-A, Carlin D, Calero-Nieto Fernando J, Leavitt, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Barbier V, Nowlan B, Levesque JP, Winkler IG. Flow cytometry analysis of cell cycling and proliferation in mouse hematopoietic stem and progenitor cells. Methods Mol Biol. 2012;844:31–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Sato F, Miyaoka Y, Miyajima A, Tanaka M. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS ONE. 2014;9:e116209.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Elbjeirami WM, Donnachie EM, Burns AR, Smith CW. Endothelium-derived GM-CSF influences expression of oncostatin M. Am J Physiol Cell Physiol. 2011;301:C947–C53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Wang J, Zheng Z, Huang B, Wu H, Zhang X, Chen Y, et al. Osteal tissue macrophages are involved in endplate osteosclerosis through the OSM-STAT3/YAP1 signaling axis in modic changes. J Immunol. 2020;205:968–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Broxmeyer HE, Bruns HA, Zhang S, Cooper S, Hangoc G, McKenzie ANJ, et al. Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity. 2002;16:815–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98:1289–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. . 2015;64:2957–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Albiero M, Ciciliot S, Tedesco S, Menegazzo L, D’Anna M, Scattolini V, et al. -associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. . 2019;68:1303–14.

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Tanaka M, Hara T, Copeland NG, Gilbert DJ, Jenkins NA, Miyajima A. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor β subunit. Blood. 1999;93:804–15.

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Winkler IG, Barbier V, Perkins AC, Magnani JL, Levesque J-P. Mobilisation of reconstituting HSC is boosted by synergy between G-CSF and E-selectin antagonist GMI-1271. Blood. 2014;124:317. (abstract)

    Article  Google Scholar 

  • 55.

    Zheng J, Lu Z, Kocabas F, Böttcher RT, Costell M, Kang X, et al. Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood. 2014;123:992–1001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1. Genes Dev. 1999;13:3027–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Takihara Y, Nakamura-Ishizu A, Tan DQ, Fukuda M, Matsumura T, Endoh M, et al. High mitochondrial mass is associated with reconstitution capacity and quiescence of hematopoietic stem cells. Blood Adv. 2019;3:2323–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Filippi M-D. HSC divisional memory: the journey of mitochondrial metabolism through HSC division. Exp Hematol. 2021;96:27–34.

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Weiss MJ, Orkin SH. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA. 1995;92:9623–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Perkins AC, Sharpe AH, Orkin SH. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375:318–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93:2867–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature. 2010;465:793–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR, et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell. 2000;6:693–704.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Müller TA, Grundler R, Istvanffy R, Rudelius M, Hennighausen L, Illert AL, et al. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3+-mediated leukemic phenotype. . 2016;30:1725–33.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 68.

    Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood. 2005;105:4792–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Read original article here.